

SimpleBGC32 2.6x serial protocol specification

Applicable for 32-bit boards with firmware 2.6x

Revision history:

- rev. 0.1 24.03.2015: this is first revision
- rev. 0.2 27.03.2015: add missed data
- rev. 0.3 30.04.2015: add missed data in CMD READ PARAMS EXT
- rev. 0.4 01.07.2015: CMD_CONTROL extended format; add MENU_CMD_LEVEL_ROLL_PITCH; FRAME_ANGLE_XX replaced by ROTOR_ANGLE_XX in the CMD_REALTIME_DATA_4; CMD_AHRS_HELPER updated;
- rev. 0.5 30.07.2015: PROFILE_FLAGS1, GENERAL_FLAGS1 set is extended; CMD_EXECUTE_MENU set
 is extended; FRAME_CAM_ANGLE_XX is deprecated;
- rev. 0.6 12.08.2015: new mode in the CMD_CONTROL: MODE_ANGLE_REL_FRAME; new commands CMD_GET_ANGLES_EXT, CMD_SET_ADJ_VARS_VAL;
- rev. 0.7 22.10.2015: new config parameters ORDER_OF_AXES, EULER_ORDER; set of PROFILE FLAGS1, GENERAL FLAGS1 extended; SKIP GYRO CALIB options extended;
- rev. 0.8 09.11.2015: CMD_AHRS_HELPER is extended;
- rev. 0.9 22.12.2015: new command CMD_GYRO_CORRECTION; list of adjustable variables was extended by the FRAME_HEADING_ANLGE, GYRO_HEADING_CORRECTION; GENERAL_FLAGS1, PROFILE_FLAGS1 set was extended;
- rev. 0.10 13.02.2016: CMD_AUTO_PID updated; NOTCH_GAIN range extended;
- rev. 0.11 07.03.2016: new command CMD_READ_PARAMS_EXT2; new parameter MOTOR_MAG_LINK_FINE; new command CMD_CALIB_MOTOR_MAG_LINK; ACC_LIMITER split to axes; extended form of CMD_HELPER_DATA;
- rev. 0.12 02.04.2016: new commands CMD_DATA_STREAM_INTERVAL, CMD_REALTIME_DATA_CUSTOM;
- rev. 0.13 05.06.2016: new command CMD_BEEP_SOUND; new adjustment variables;
- rev. 0.14 21.06.2016: CMD ADJ VARS STATE described;
- rev. 0.15 09.07.2016: CMD_READ_PARAMS_EXT2 was extended; CMD_AUTO_PID CFG_FLAGS was extended; CMD_CALIB_INFO was documented; CMD_DATA_STREAM_INTERVAL was corrected;
- rev. 0.16 10.08.2016: MavLink parameters are described in the CMD_READ_PARAMS_EXT2; several minor corrections;
- rev. 0.17 21.10.2016: new commands CMD_CONTROL_CONFIG, CMD_CALIB_ORIENT_CORR; CMD_READ_PARAMS_EXT2 extended;
- rev. 0.18 23.03.2017: CMD_HELPER_DATA extended by the FRAME_HEADING parameter;
 CMD_CONTROL is extended by the CONTROL_FLAG_AUTO_TASK; new command
 CMD_CALIB_ACC_EXT_REF; document structure is updated;
- rev. 0.19 08.09.2017: CMD EVENT add; CMD DATA STREAM INTERVAL was updated.
- rev. 0.20 10.30.2017: Fixed error in parameter EXT_FC_GAIN in the CMD_READ_PARAMS_3; Updated CMD_READ_PARAMS_EXT2
- rev. 0.21 10.01.2018: Add new parameters to CMD_READ_PARAMS_EXT2 for 2.66b2 firmware
- rev. 0.22 05.02.2018: re-write intro part; add several new identifiers to command list;
- rev. 0.24 29.03.2018: updated CMD_EXECUTE_MENU command; add AHRS_DEBUG_INFO and MOTOR4_CONTROL data structures; extended CMD_REALTIME_DATA_CUSTOM; add CMD_EXT_IMU_DEBUG_INFO; add CMD_READ_PARAMS_EXT3, CMD_WRITE_PARAMS_EXT3;
- rev. 0.25 27.11.2018: add a specification of protocol V2.
- rev. 0.26 21.03.2019: add command CMD AUTO PID2
- rev. 0.27 18.09.2019: add command CMD_EXT_IMU_CMD

Overview

Serial API allows for an external application or device to communicate with the SimpleBGC controller via serial port (UART). Each controller has several UART ports that can be used to send or receive Serial API commands. All models are equipped with the USB port that is visible as Virtual Com Port (VCP) for the host machine. Depending on controller, USB may be dedicated or shared with the one of UARTs.

Commands may be used to retrieve actual system state and realtime data, change settings, control gimbal, trigger pin state, execute various actions, get access to internal EEPROM and I2C bus, and so on. Moreover, SimpleBGC GUI software uses the same Serial API protocol to communicate with the board, so all of its functions may be implemented in third-party applications.

Communications is initiated from the remote side (host) by sending *outgoing* commands. The controller may do some action and send response (for the host it is an *incoming* command).

Board can work on different serial baud rates, adjustable by the parameters, with the 115200 as default value. Host can automatically find the proper baud rate by sending the CMD_BOARD_INFO command in a loop, altering the speed ant waiting for a response, until valid response is received, or should allow to specify a baud rate in its settings.

Additionally, board can auto-detect the "parity" parameter. EVEN and NONE parity are supported (NONE is selected by default after start, and EVEN is detected automatically). It means that beside the baud rates, host application should vary the parity setting, when connecting through an intermediate layer that can have this parameter unknown (like Bluetooth modules). For the direct UART or USB VCP connection, it is enough to set parity to "NONE".

Throughout capacity

The controller parses incoming command queue each 8ms, so there is no reason to send commands of the same type with the higher rate. Commands of different type may be sent without delay between them. It is responsibility of the host application to prevent an overflow of the input and output buffers of the controller (255 bytes each). If new serial data comes when the input buffer is full, the whole message will be lost. If controller has to generate an answer that does not fit into the output buffer, it hangs until buffer will have enough space to accept new data. It may negatively affect the normal operation and even make whole system unstable. The only exception is the CMD_REALTIME_DATA_xx and several others, that are considered as non-obligatory for delivery.

You can calculate the safe rates according to the size of incoming and outgoing commands and the configured baud rate for the serial port. Take into account the bandwidth and the buffering strategy of the intermediate transmission layer. For example, BLE modules have a very limited bandwidth and small buffers. Also, almost all radio modems have effective transmission rate less then 100Kbit/s in optimal conditions.

Debugging

You can configure SimpleBGC32 GUI to display all incoming and outgoing commands that it receives/sends. To do it, run it in a "console" mode using the "run_console.bat" script. Commands will be displayed in the "Debug" tab in format:

```
<local time> <direction>: [<command id>,<payload length>] <payload data hex>
```

Note that several commands with high rate are not displayed (like CMD REALTIME DATA xx).

Starting from the firmware and GUI version 2.66b4, it's possible to monitor all serial API messages on all other ports, by connecting GUI to any available serial port, configured for the SBGC Serial API mode, and enabling the "Debug" – "Set as debug port" option for it. Controller will forward all incoming and outgoing Serial API commands from all other ports to this port. Commands will be displayed in the "Debug" tab in

format:

<MCU_time> port<idx>.<direction>: [<command_id>,<payload_length>] <payload_data_hex>

In this case, the "in" direction means "to the board", "out" – "from the board". Note, that only the successfully parsed commands are forwarded. All unknown data is ignored.

Message format

Each command consists of the *header* and the *body*, both with checksum. Commands with the wrong header or body checksum, or with the body size that differs from expected, should be ignored. Parser should scan incoming datastream for the next start character and try to restore synchronization from it.

Input and output commands have the same format.

Protocol version 1

	hea	ıder	body				
start character > (0x3E)	command ID, 0255	payload size N=0255	header checksum		paylo	ad	payload checksum
0	1	2	3	4		4+N-1	4+N

Header checksum is calculated as (command ID + payload_size) modulo 256. Payload checksum is calculated as the sum of all payload bytes modulo 256.

Operation "modulo" means least significant byte of the sum.

Example: outgoing command to read Profile2:

	hea	body			
0	1	2	3	4	5
0x3E	0x52	0x01	0x53	0x01	0x01

Protocol version 2

Starting from firmware version 2.68b0, firmware additionally supports protocol version 2, that has better error rejection by replacing 8 bit simple checksum to CRC16 checksum.

	hea	ıder		bod	У	crc		
start character \$ (0x24)	command ID, 0255	payload size N=0255	header checksum	pay	/load,vari	able size	mes chec CR	
0	1	2	3	4		4+N-1	4+N	4+N+1

Compared to version 1, it has a different start character "\$" and a different checksum calculation: payload checksum is calculated as a CRC16 over the header bytes and payload bytes, starting from index 1 to index 4+N-1. A reference implementation of CRC16 using polynomial 0x8005 is given in the appendix A.

Protocol version 2 locking

At startup, firmware supports messages in both versions 1 and 2. But when the first valid message version 2 is received, this version is locked and all incoming messages in version 1 are not recognized anymore.

Data type notation

- 1u 1 byte unsigned
- 1s 1 byte signed
- 2u 2 byte unsigned (little-endian order)
- 2s 2 byte signed (little-endian order)
- 4f float (IEEE-754 standard)
- 4s 4 bytes signed (little-endian order)
- string ASCII character array, first byte is array size
- Nb byte array size N

Many parameters are grouped in arrays, that is indicated by the square brackets notation: "ANGLE[3]". Parameters that are split to axes, always go in the order ROLL, PITCH, YAW for the Euler angles (and corresponding motors in normal position), or X, Y, Z for the vectors (X points right, Y – forward, Z – up). Coordinate system is "END" (East-North-Down), that differs from commonly used NED system: in our system, X points right (or East), Y points forward (or North), Z points down. To convert vectors to NED system, you need to swap X and Y values.

Command ID definitions

```
#define CMD_READ_PARAMS 82
#define CMD_WRITE_PARAMS 87
#define CMD REALTIME DATA 68
#define CMD_BOARD_INFO 86
#define CMD_CALIB_ACC 65
#define CMD CALIB GYRO 103
#define CMD CALIB EXT GAIN 71
#define CMD USE DEFAULTS 70
#define CMD CALIB POLES 80
#define CMD_RESET 114
#define CMD HELPER DATA 72
#define CMD CALIB OFFSET 79
#define CMD CALIB BAT 66
#define CMD_MOTORS_ON
#define CMD MOTORS OFF 109
#define CMD_CONTROL 67
#define CMD_TRIGGER_PIN 84
#define CMD_EXECUTE_MENU 69
#define CMD_GET_ANGLES 73
#define CMD CONFIRM 67
#define CMD_BOARD_INFO_3 20
#define CMD_READ_PARAMS_3 21
#define CMD WRITE PARAMS 3 22
#define CMD REALTIME DATA 3 23
#define CMD REALTIME DATA 4 25
#define CMD_SELECT_IMU_3 24
#define CMD_READ_PROFILE_NAMES 28
#define CMD_WRITE_PROFILE_NAMES 29
#define CMD_QUEUE_PARAMS_INFO_3 30
#define CMD_SET_ADJ_VARS_VAL 31
#define CMD_SAVE_PARAMS_3 32
#define CMD READ PARAMS EXT 33
#define CMD_WRITE_PARAMS_EXT 34
#define CMD AUTO PID 35
#define CMD_SERVO_OUT 36
#define CMD I2C WRITE REG BUF 39
```

```
#define CMD I2C READ REG BUF 40
#define CMD WRITE EXTERNAL DATA 41
#define CMD READ EXTERNAL DATA 42
#define CMD READ ADJ VARS CFG 43
#define CMD WRITE ADJ VARS CFG 44
#define CMD API VIRT CH CONTROL 45
#define CMD ADJ VARS STATE 46
#define CMD EEPROM WRITE 47
#define CMD_EEPROM_READ 48
#define CMD_CALIB_INFO 49
#define CMD_SIGN_MESSAGE 50
#define CMD_BOOT_MODE_3 51
#define CMD_SYSTEM_STATE 52
#define CMD_READ_FILE 53
#define CMD WRITE FILE 54
#define CMD FS CLEAR ALL 55
#define CMD_AHRS_HELPER 56
#define CMD_RUN_SCRIPT 57
#define CMD_SCRIPT_DEBUG 58
#define CMD CALIB MAG 59
#define CMD_GET_ANGLES_EXT 61
#define CMD_READ_PARAMS_EXT2 62
#define CMD_WRITE_PARAMS_EXT2 63
#define CMD GET ADJ VARS VAL 64
#define CMD_CALIB_MOTOR_MAG_LINK 74
#define CMD_GYRO_CORRECTION 75
#define CMD_DATA_STREAM_INTERVAL 85
#define CMD REALTIME DATA CUSTOM 88
#define CMD_BEEP_SOUND 89
#define CMD ENCODERS CALIB OFFSET 4 26
#define CMD ENCODERS CALIB FLD OFFSET 4 27
#define CMD CONTROL CONFIG 90
#define CMD CALIB ORIENT CORR 91
#define CMD_COGGING_CALIB_INFO 92
#define CMD_CALIB_COGGING 93
#define CMD_CALIB_ACC_EXT_REF 94
#define CMD_PROFILE_SET 95
#define CMD_CAN_DEVICE_SCAN 96
#define CMD_CAN_DRV_HARD_PARAMS 97
#define CMD_CAN_DRV_STATE 98
#define CMD_CAN_DRV_CALIBRATE 99
#define CMD_READ_RC_INPUTS 100
#define CMD_REALTIME_DATA_CAN_DRV 101
#define CMD_EVENT 102
#define CMD READ PARAMS EXT3 104
#define CMD_WRITE_PARAMS_EXT3 105
#define CMD_EXT_IMU_DEBUG_INFO 106
#define CMD SET DEVICE ADDR 107
#define CMD AUTO PID2 108
#define CMD_EXT_IMU_CMD 110
#define CMD_READ_STATE_VARS 111
#define CMD_WRITE_STATE_VARS 112
#define CMD_SERIAL_PROXY 113
#define CMD_IMU_ADVANCED_CALIB 115
#define CMD_API_VIRT_CH_HIGH_RES 116
#define CMD SET DEBUG PORT 249
#define CMD MAVLINK INFO 250
#define CMD MAVLINK DEBUG 251
#define CMD_DEBUG_VARS_INFO_3 253
#define CMD_DEBUG_VARS_3 254
#define CMD ERROR 255
```

Incoming commands

CMD_BOARD_INFO – version and board information

Name	Туре	Min	Max	Possible values, remarks
BOARD_VER	1u			Multiplied by 10: 3.0 => 30
FIRMWARE_VER	2u			Split into decimal digits X.XX.X, for example 2305 means 2.30b5
				<pre>major_ver = (int)(FIRMWARE_VER/1000); minor_ver = (int)((FIRMWARE_VER%1000)/10); beta_ver = FIRMWARE_VER%10;</pre>
STATE_FLAGS1	1u			bit0: DEBUG_MODE — internal use only
				Starting from frw.ver. 2.66: bit1: IS_FRAME_INVERTED — system is re-configured for frame inversion over the middle motor;
				The following flags are set at the system initialization: bit2: INIT_STEP1_DONE - finished initialization of all basic sensors, frame inversion configuration is applied; bit3: INIT_STEP2_DONE - finished initialization of the RC subsystem, adjustable variables, etc. Automated positioning is started; bit4: STARTUP_AUTO_ROUTINE_DONE - positioning and calibrations at startup is finished;
BOARD_FEATURES	2u			Bit set: BOARD_FEATURE_3AXIS = 1 BOARD_FEATURE_BAT_MONITORING = 2 BOARD_FEATURE_ENCODERS = 4 BOARD_FEATURE_BODE_TEST = 8 BOARD_FEATURE_SCRIPTING = 16 BOARD_FEATURE_CURRENT_SENSOR = 32
CONNECTION_FLAG	1u			Bit set: CONNECTION_USB = 1
FRW_EXTRA_ID	4u			Used for specific builds only
RESERVED	7b			

CMD_BOARD_INFO_3 - additional board information

Name	Туре	Min	Max	Possible values, remarks
DEVICE_ID	9b			Unique Id used to identify each controller in licensing system
MCU_ID	12b			MCU ID, unique
EEPROM_SIZE	4u			Size of available EEPROM in current device. Generally 32K bytes
SCRIPT_SLOT1_SIZE SCRIPT_SLOT2_SIZE SCRIPT_SLOT3_SIZE	2u			size of user-written scripts stored in each slot, 0 if slot is empty.

SCRIPT_SLOT4_SIZE SCRIPT_SLOT5_SIZE				
PROFILE_SET_SLOTS	1u			bit0bit5: bit is set if the corresponding profile set is not empty. bit0 for profile set#1, bit2 for profile set#2, bit5 for profile set backup
PROFILE_SET_CUR	1u	1	6	A number of currently selected profile set
RESERVED	32b			

CMD_READ_PARAMS_3 - read/write system configuration part 1

Receive parameters for a single profile.

Na	me	Туре	Min	Max	Possible values, remarks
PR	OFILE_ID	1u			profile ID to read or write. To access current (active) profile, specify 255. Possible values: 04
	Р	1u	0	255	
3	I	1u	0	255	divided by 100 when displayed in the GUI
(13)	D	1u	0	255	
axis =	POWER	1u	0	255	
b	INVERT	1u	0	1	
	POLES	1u	0	255	
AC	C_LIMITER_ALL	1u	0	255	Units: 5 degrees/sec ² 0 – disabled. (starting from ver. 2.60 is deprecated; replaced by the ACC_LIMITER3)
EX	T_FC_GAIN[2]	1s*2	-127	127	
	RC_MIN_ANGLE	2s	-720	720	Units: degrees
	RC_MAX_ANGLE	2s	-720	720	Units: degrees
(13)	RC_MODE	1u			<pre>02 bits - mode: RC_MODE_ANGLE = 0 RC_MODE_SPEED = 1 3rd bit - control is inverted, if set to 1</pre>
axis = (RC_LPF	1u	0	15	
6	RC_SPEED	1u	0	255	
	RC_FOLLOW	1u	-127	127	ROLL, PITCH: this value specify follow rate for flight controller. YAW: if value != 0, "follow motor" mode is enabled.
GY	RO_TRUST	1u	0	255	
US	E_MODEL	1u	0	1	
PW	M_FREQ	1u			PWM_FREQ_LOW = 0 PWM_FREQ_HIGH = 1

				PWM_FREQ_ULTRA_HIGH = 2
SERIAL_SPPED	1u			Baud rate for the main UART1 port (where USB normally connects) 115200 = 0 57600 = 1 38400 = 2 19200 = 3 9600 = 4 256000 = 5
RC_TRIM[3]	1s*3	-127	127	
RC_DEADBAND	1u	0	255	
RC_EXPO_RATE	1u	0	100	
RC_VIRT_MODE	1u			The mode of the RC_ROLL input pin operation: RC_VIRT_MODE_NORMAL = 0 RC_VIRT_MODE_CPPM = 1 RC_VIRT_MODE_SBUS = 2 RC_VIRT_MODE_SPEKTRUM = 3 RC_VIRT_MODE_API = 10
RC_MAP_ROLL RC_MAP_PITCH RC_MAP_YAW RC_MAP_CMD RC_MAP_FC_ROLL RC_MAP_FC_PITCH	1u*6			Assign input as a signal source. Bits 04 for channel number, bits 57 for a type. Value 0 means that input is not assigned. PWM source RC_INPUT_ROLL = 1 RC_INPUT_PITCH = 2 EXT_FC_INPUT_ROLL = 3 EXT_FC_INPUT_PITCH = 4 RC_INPUT_YAW = 5 Analog source Channel = 13, type = 32 (5 th bit is set) ADC1 = 33 ADC2 = 34 ADC3 = 35 RC Serial source (CPPM/SBUS/SPEKTRUM): Virtual channel (131), type = 64 (6 th bit is set) API Virtual control source Virtual channel (131), type = 128 (7 th bit is set) Step signal source (ver. 2.66+) Step signal channel 16, type = 160 (5 th and 7 th bits are set)
RC_MIX_FC_ROLL RC_MIX_FC_PITCH	1u 1u			Mix the value received from the FC channel, to the value received from the selected RC channels, with the given rate: bits 05: mix rate. For example,

FOLLOW_MODE	1u			FOLLOW_MODE_DISABLED=0 FOLLOW_MODE_FC=1 FOLLOW_MODE_PITCH=2
FOLLOW_DEADBAND	1u	0	255	
FOLLOW_EXPO_RATE	1u	0	100	
FOLLOW_OFFSET[3]	1s*3	-127	127	
AXIS_TOP AXIS_RIGHT FRAME_AXIS_TOP FRAME_AXIS_RIGHT	1s 1s 1s 1s			Main IMU and frame IMU orientation: X = 1 Y = 2 Z = 3 -X = -1 -Y = -2 -Z = -3
FRAME_IMU_POS	1u			Location of the frame IMU: FRAME_IMU_DISABLED = 0 FRAME_IMU_BELOW_YAW = 1 FRAME_IMU_ABOVE_YAW = 2 FRAME_IMU_BELOW_YAW_PID_SOURCE = 3
GYRO_DEADBAND	1u	0	255	Units: 0.1 of gyro sensor's units.
GYRO_SENS	1u			deprecated
I2C_SPEED_FAST	1u	0	1	If set, use 800kHz ultra-fast speed mode, otherwise use 400kHz speed
SKIP_GYRO_CALIB	1u			Skip calibration of gyroscope. 0 - do not skip 1 - skip always 2 - try to calibrate but skip if motion is detected
RC_CMD_LOW RC_CMD_MID RC_CMD_HIGH MENU_CMD_1 MENU_CMD_2 MENU_CMD_3	1u*9			Assign action to various event sources. See CMD_EXECUTE_MENU for available actions
MENU_CMD_4 MENU_CMD_5 MENU_CMD_LONG				
MOTOR_OUTPUT[3]	1u*3			Motor output mapping DISABLED = 0 ROLL = 1 PITCH = 2 YAW = 3 I2C_DRV#1 = 4 I2C_DRV#2 = 5 I2C_DRV#3 = 6 I2C_DRV#4 = 7
BAT_THRESHOLD_ALARM	2s	-3000	3000	Negative means means alarm is disabled Units: 0.01V
BAT_THRESHOLD_MOTOR S	2s	-3000	3000	Negative value means function is disabled Units: 0.01V

BAT_COMP_REF	2s	-3000	3000	Negative value means compensation is disabled. <i>Units: 0.01V</i>
BEEPER_MODES	1u			BEEPER_MODE_CALIBRATE=1 BEEPER_MODE_CONFIRM=2 BEEPER_MODE_ERROR=4 BEEPER_MODE_ALARM=8
				BEEP_BY_MOTORS=128 (if this flag is set, motors emit sound instead of internal buzzer)
FOLLOW_ROLL_MIX_STAR T	1u	0	90	
FOLLOW_ROLL_MIX_RAN GE	1u	0	90	
BOOSTER_POWER[3]	1u*3	0	255	Additional power to correct lost synchronization
FOLLOW_SPEED[3]	1u*3	0	255	
FRAME_ANGLE_FROM_M OTORS	1u	0	1	
RC_MEMORY[3]	2s*3	-36767	32767	Initial angle that is set at system start-up, in 14bit resolution
				Units: 0,02197265625 degree
SERVO1_OUT SERVO2_OUT SERVO3_OUT SERVO4_OUT	1u*4			Disabled = 0 132 - Virtual channel number as source of data to be output
SERVO_RATE	1u	5	40	PWM frequency, 10 Hz per unit.
ADAPTIVE_PID_ENABLED	1u			Set of bits (0 - disable all): EN_ROLL = 1 EN_PITCH = 2 EN_YAW = 4
ADAPTIVE_PID_THRESHO LD	1u	0	255	
ADAPTIVE_PID_RATE	1u	1	255	
ADAPTIVE_PID_RECOVER Y_FACTOR	1u	0	10	
FOLLOW_LPF[3]	1u*3	0	15	
GENERAL_FLAGS1	2u			REMEMBER_LAST_USED_PROFILE = (1<<0) UPSIDE_DOWN_AUTO = (1<<1) SWAP_FRAME_MAIN_IMU = (1<<2) BLINK_PROFILE = (1<<3) EMERGENCY_STOP = (1<<4) MAGNETOMETER_POS_FRAME = (1<<5) FRAME_IMU_FF = (1<<6) OVERHEAT_STOP_MOTORS = (1<<7) CENTER_YAW_AT_STARTUP = (1<<8) SWAP_RC_SERIAL_UART_B = (1<<9) UART_B_SERIAL_API = (1<<10) BLINK_BAT_LEVEL = (1<<11)

		ADAPTIVE_GYRO_TRUST = (1<<12)
		(frw. ver. 2.66+) IS_UPSIDE_DOWN = (1<<13)
PROFILE_FLAGS1	2u	ADC1_AUTO_DETECTION = (1<<0) ADC2_AUTO_DETECTION = (1<<1) ADC3_AUTO_DETECTION = (1<<2) FOLLOW_USE_FRAME_IMU = (1<<4) BRIEFCASE_AUTO_DETECTION = (1<<5) UPSIDE_DOWN_AUTO_ROTATE = (1<<6) FOLLOW_LOCK_OFFSET_CORRECTION = (1<<7) START_NEUTRAL_POSITION = (1<<8) MENU_BUTTON_DISABLE_FOLLOW = (1<<9) TIMELAPSE_FRAME_FIXED = (1<<10) RC_KEEP_MIX_RATE = (1<<11) RC_KEEP_CUR_POS_ON_INIT = (1<<12) (frw. ver. 2.66+) OUTER_MOTOR_LIMIT_FREE_ROTATION = (1<<13) (frw. ver. 2.67b1+) EULER_ORDER_AUTO = (1<<14)
SPEKTRUM_MODE	1u	<pre>0 Auto-detection (default) 1 DSM2/11ms/10bit 2 DSM2/11ms/11bit 3 DSM2/22ms/10bit 4 DSM2/22ms/11bit 5 DSMX/11ms/10bit 6 DSMX/11ms/11bit 7 DSMX/22ms/10bit 8 DSMX/22ms/11bit</pre>
ORDER_OF_AXES	1u	Order of hardware axes, counting from a camera: PITCH_ROLL_YAW = 0 YAW_ROLL_PITCH = 1 ROLL_YAW_PITCH* = 2 ROLL_PITCH_YAW = 3 * implemented in special builds of firmware only
EULER_ORDER	1u	Order of Euler angles to represent the current orientation of a camera and the target of stabilization: PITCH_ROLL_YAW = 0 ROLL_PITCH_YAW = 1 LOCAL_ROLL* = 2 ROLL_LOCAL* = 3 YAW_ROLL_PITCH = 4 YAW_PITCH_ROLL = 5 * used for 2-axis systems only
CUR_IMU	1u	currently selected IMU IMU_TYPE_MAIN=1 IMU_TYPE_FRAME=2
CUR_PROFILE_ID	1u	profile ID which is currently active in the controller, 04

CMD_READ_PARAMS_EXT - read/write system configuration part 2

Nar	ne	Туре	Min	Max	Possible values, remarks
PR	OFILE_ID	1u			profile ID to read or write. To access current (active) profile, specify 255. Possible values: 04
(13)	NOTCH_FREQ	1u	0	255	Center frequency, x2 Hz (value 10 means 20Hz)
axis = (NOTCH_WIDTH	1u	0	255	Width of -3dB gain band, Hz
LPF	F_FREQ[3]	2u*3	0	1000	Low-pass filter -3dB cut-off frequency, Hz
FIL	FERS_EN[3]	1u*3			Set of bits (0 - disable all): EN_NOTCH1 = 1 EN_NOTCH2 = 2 EN_NOTCH3 = 4 EN_LPF = 8
EN	CODER_OFFSET[3]	2s*3			Units: 0,02197265625 degree
EN(CODER_FLD_OFFSET[3	2s*3			Units: 0,02197265625 degree
1	CODER_MANUAL_SET_ IE[3]	1u*3	0	255	Units: 10ms
MO R[3	TOR_HEATING_FACTO]	1u*3	0	255	
MO R[3	TOR_COOLING_FACTO	1u*3	0	255	
RE:	SERVED	2b			
FOI ND	LOW_INSIDE_DEADBA	1u	0	255	
МО	TOR_MAG_LINK[3]	1u*3	0	255	Deprecated, replaced by the MOTOR_MAG_LINK_FINE
МО	TOR_GEARING[3]	2u*3			Real number encoded as 8.8 fixed point (1.0f → 256)
1	CODER_LIMIT_MIN[3] CODER_LIMIT_MAX[3]	1s*3 1s*3	-127	127	Units: 3 degree Startig from ver. 2.61 is deprecated, replaced by the FRAME_CAM_ANGLE_MIN.
NO	TCH1_GAIN[3] TCH2_GAIN[3] TCH3_GAIN[3]	1s*3 1s*3 1s*3	-100	100	Notch gain, in dB (positive – notch, negative – peak filter)
BEI	EPER_VOLUME	1u	0	255	
EN	CODER_GEAR_RATIO[3]	2u*3			Units: 0.001
EN	CODER_TYPE[3]	1u*3			Bits 03: ENC_TYPE_AS5048A = 1 ENC_TYPE_AS5048B = 2 ENC_TYPE_AS5048_PWM = 3 ENC_TYPE_AMT203 = 4 ENC_TYPE_MA3_10BIT = 5 ENC_TYPE_MA3_12BIT = 6

				ENC_TYPE_ANALOG = 7 ENC_TYPE_I2C_DRV1 = 8 ENC_TYPE_I2C_DRV2 = 9 ENC_TYPE_I2C_DRV3 = 10 ENC_TYPE_I2C_DRV4 = 11 ENC_TYPE_AS5600_PWM = 12 ENC_TYPE_AS5600_I2C = 13 ENC_TYPE_RLS_ORBIS = 14 TYPE_RLS_ORBIS_PWM = 15 Bit 4: SKIP_DETECTION = 1 Bit 7: ENCODER_IS_GEARED = 1
ENCODER_CFG[3]	1u*3			For SPI encoders: SPI_SPEED_1MHz = 0 SPI_SPEED_2MHz = 1 SPI_SPEED_4MHz = 2 SPI_SPEED_500kHz = 3 For I2C_DRV: internal encoder type
OUTER_P[3]	1u*3	0	255	
OUTER_I[3]	1u*3	0	255	
MAG_AXIS_TOP MAG_AXIS_RIGHT	1s			X = 1 Y = 2 Z = 3 -X = -1 -Y = -2 -Z = -3
MAG_TRUST	1u	0	255	
MAG_DECLINATION	1s	-90	90	Units: 1 degree
ACC_LPF_FREQ	2u	0	1000	Units: 0.01Hz
D_TERM_LPF_FREQ[3]	1u*3	0	60	Units: 10Hz

CMD_READ_PARAMS_EXT2 - read/write system configuration part 3

Na	me	Туре	Min	Max	Possible values, remarks
PF	ROFILE_ID	1u			profile ID to read or write. To access current (active) profile, specify 255. Possible values: 04
channel = (12)	MAV_SRC	1u			Disabled=0 UART1=1 RC_SERIAL=2 UART2=3 USB VCP=4
5	MAV_SYS_ID	1u	0	255	
	MAV_COMP_ID	1u	0	255	
	MAV_CFG_FLAGS	1u			FLAG_BAUD_MASK = ((1<<0) (1<<1) (1<<2)) // baud rate idx 05 FLAG_PARITY_EVEN = (1<<3) // even parity FLAG_HEARTBEAT = (1<<4) // send heartbeat

				FLAG_DEBUG = (1<<5) // send debug to GUI FLAG_RC = (1<<6) // use RC values
MAV_RESERVED	4b			
MOTOR_MAG_LINK_FINE[3]	2u*3	0	65000	Units: 0.01
ACC_LIMITER[3]	1u*3	0	200	Units: 5 degrees/sec²
PID_GAIN[3]	1u*3	0	255	<pre>pid_gain_float[axis] = 0.1 + PID_GAIN[axis]*0.02</pre>
FRAME_IMU_LPF_FREQ	1u	0	200	Units: Hz
AUTO_PID_CFG	1u			See 'CFG_FLAGS' in the CMD_AUTO_PID
AUTO_PID_GAIN	1u	0	255	See 'GAIN_VS_STABILITY' in the CMD_AUTO_PID
FRAME_CAM_ANGLE_MIN[3] FRAME_CAM_ANGLE_MAX [3]	2s*3 2s*3			Software limits for motor's angles (frw. ver. 2.61+) Units: 1 degree
GENERAL_FLAGS2	2u			<pre>(frw. ver. 2.61+) SEARCH_LIMIT_ROLL = (1<<0) SEARCH_LIMIT_PITCH = (1<<1) SEARCH_LIMIT_YAW = (1<<2) (frw. ver. 2.62b7+) AUTO_CALIBRATE_MOMENTUM = (1<<3) USE_MOMENTUM_FEED_FORWARD = (1<<4) MOTORS_OFF_AT_STARTUP = (1<<5) FC_BELOW_OUTER = (1<<6) (frw. ver. 2.66+) DO_NOT_CHECK_ENCODER_LIMITS = (1<<7) AUTO_SAVE_BACKUP_SLOT = (1<<8) FC_BELOW_MIDDLE = (1<<9) Note: if both flags FC_BELOW_OUTER and FC_BELOW_MIDDLE are set, it means FC position on the camera platform (frw. ver. 2.67b2+) ENVIRONMENT_TEMP_UNKNOWN = (1<<10)</pre>
AUTO_SPEED	1u	1	255	(frw. ver. 2.61+) Speed used in automated tasks. The same range as for the RC_SPEED parameter
AUTO_ACC_LIMITER	1u	1	255	(frw. ver. 2.61+) Acceleration limiter used in automated tasks. The same range as for ACC_LIMITER parameter Units: 5 degrees/sec²
IMU_ORIENTATION_CORR[3]	2s			(frw. ver. 2.61+) The rotation angle of correction of main IMU sensor misalignment over its local X,Y,Z axis. Units: 0.01 degrees
TIMELAPSE_TIME	2u			(frw. ver. 2.60+) Time for the time-lapse motion sequence Units: seconds
EMERGENCY_STOP_REST	2u			Units: ms

ART_DELAY				
TIMELAPSE_ACC_PART	1u	0	250	Units: 0.2%
MOMENTUM[3]	2u*3			(frw.ver. 2.62b7+)
MOMENTUM_CALIB_STIM ULUS[3]	1u*3	1	255	(frw.ver. 2.62b7+)
MOMENTUM_ELITPICITY[3]	1u*3	1	255	(frw.ver. 2.62b7+) Units: 0.05
FOLLOW_RANGE[3]	1u*3	1	180	(frw.ver. 2.62b7+) Units: degrees
STAB_AXIS[3]	1u*3			(frw.ver. 2.62b7+) Bits01: axis assigned for each motor: 0 - default 1 - ROLL 2 - PITCH 3 - YAW Bits24: enable automatic selection of best matching axis: bit2: ROLL bit3: PITCH bit4: YAW
OUTER_MOT_TILT_ANGLE	1s	-90	90	Units: degrees
The following parameters are	applie	d for the f	⊥ irmware	ver. 2.66+
STARTUP_ACTION[4]	1u*4			bits 06: action, as listed in the CMD_EXECUTE_MENU.CMD_ID bit7: if set, menu button should be pressed
STARTUP_ACTION_SRC[2] [4]	1u*8			Signal source, as listed in the RC_MAP_ROLL parameter
STARTUP_ACTION_THRES HOLD[2][4]	1s*8			Threshold for RC signal on a given source, multiplied by 10.
FORCE_POSITION_CFG[3]	1u*3			bits 02: snap angle, one of the 0, 45, 90, 180 bits 47: flags: FORCE_POSITION_FLAG_BUTTON_PRESS = (1<<4) FORCE_POSITION_FLAG_STARTUP = (1<<5) FORCE_POSITION_FLAG_IGNORE_LIMITS = (1<<6) FORCE_POSITION_FLAG_FINE_ADJUST = (1<<7)
STEP_SIGNAL_SRC	1u			Signal source, as listed in the RC_MAP_ROLL parameter
STEP_SIGNAL_CFG	1u			bits 02: number of steps, one of the [2, 3, 5, 10, 15, 25, 50, 100] bit 3: if set, menu button should be pressed bit 5: if set, initial value is zero bits 67: mode MODE_LEVEL_LOW = 0 MODE_LEVEL_HIGH = 1 MODE_LEVEL_LOW_HIGH = 2
RC_CALIB_SRC	1u			Signal source to apply calibration, as listed in the RC_MAP_ROLL parameter
RC_CALIB_OFFSET	1u			Calibration is applied by the rule:

RC_CALIB_NEG_SCAL E	1u			val = val + RC_CALIB_OFFSET*(RC_RANGE/2/128); if(val > 0) val = val * (80 + RC_CALIB_POS_SCALE) / 100;
RC_CALIB_POS_SCAL E	1u			else val = val * (80 + RC_CALIB_NEG_SCALE) / 100;
PARKING_POS_CFG	1u			ROLL: bit 0 – negative border, bit 1 – positive border PITCH: bit 2 – negative border, bit 3 – positive border YAW: bit 4 – negative border, bit 5 – positive border
EXT_LED_PIN_ID	1u			Use this pin to duplicate the on-board LED function. Values are listed in the CMD_TRIGGER_PIN.PIN_ID
INTERRUPT_CFG	2u			bits 04: pin ID as listed in the CMD_TRIGGER_PIN.PIN_ID bit 5: generate interrupt on emergency stop bit 6: generate interrupt on entering parking position
OVERLOAD_TIME	1u			Units: 100ms
AUTO_PID_MOMENTUM	1u	0	255	
JERK_SLOPE[3]	1u*3			Units: ms
MAV_CTRL_MODE	1u	0	2	0 – disabled 1 – ROLL and PITCH axes 2 – all axes
RC_SERIAL_SPEED UART2_SPEED	1u*2			See the SERIAL_SPEED parameter definition
MOTOR_RES[3]	1u*3	0	255	Motor resistance (one phase) Units: 100 mOhm
CURRENT_LIMIT	2u	0	65535	Units: 10mA
MIDDLE_MOT_TILT_ANGL E	1s	-90	90	(frw. ver. 2.67+) Units: degrees

CMD_READ_PARAMS_EXT3 - read/write system configuration part 3 (frw.ver. 2.66+)

Name	Type	Min	Max	Possible values, remarks
PROFILE_ID	1u			profile ID to read or write. To access current (active) profile, specify 255. Possible values: 04
RESERVED	21b			
EXT_IMU_TYPE	1u			MavLink1 = 1 MavLink2 = 2 Vectornav VN200 = 3 Inertialsense uAHRS = 4
EXT_IMU_PORT	1u			Disabled = 0 UART1 = 1 RC_SERIAL = 2 UART2 = 3 USB VCP = 4
EXT_IMU_POSITION	1u			BELOW_OUTER = 1 ABOVE_OUTER = 2 BELOW_MIDDLE = 8 MAIN_IMU = 9
EXT_IMU_ORIENTATION	1u			index in array [X, Y, Z, -X, -Y, -Z] bit03 for the TOP axis

				bit46 for the RIGHT axis
EXT_IMU_FLAGS	2u			EXT_IMU_FLAG_ACC_COMP_ONLY = 2 EXT_IMU_FLAG_REPLACE = 4 EXT_IMU_FLAG_Z = 8 EXT_IMU_FLAG_H = 16 EXT_IMU_FLAG_FRAME_UPSIDE_DOWN_UPDATE = 32 EXT_IMU_FLAG_AS_FRAME_IMU = 64 EXT_IMU_FLAG_GYRO_CORR = 128 (frw.ver. 2.68b7+)
EXT_IMU_RESERVED	12b			
SOFT_LIMIT_WIDTH[3]	1u*3	1	255	Width of the software limits defined by the FRAME_CAM_ANGLE_MIN, FRAME_CAM_ANGLE_MAX Units: 0.1 degrees
ADC_REPLACE_SRC[3]	1u*3			See RC_MAP_ROLL description for possible values
GLOCK_MID_MOT_POS_C ORR_RATE	1u	0	255	
RESERVED	174b			

CMD_REALTIME_DATA_3 - receive real-time data

Nam	ne	Туре	Min	Max	Possible values, remarks
s = (13)	ACC_DATA	2s			Data from the accelerometer sensor with the calibrations applied. Units: 1/512 G
axis	GYRO_DATA	2s			Data from the gyroscope sensor with the calibrations applied. <i>Units:</i> 0,06103701895 degree/sec.
SER	IAL_ERR_CNT	2u	0	65535	
SYS	TEM_ERROR	2u			Set of bits (0 - no error): ERR_NO_SENSOR (1<<0) ERR_CALIB_ACC (1<<1) ERR_SET_POWER (1<<2) ERR_CALIB_POLES (1<<3) ERR_PROTECTION (1<<4) ERR_SERIAL (1<<5) Beside that, extended error contains bits: ERR_LOW_BAT1 (1<<6) ERR_LOW_BAT2 (1<<7) ERR_GUI_VERSION (1<<8) ERR_MISS_STEPS (1<<9) ERR_SYSTEM (1<<10) ERR_EMERGENCY_STOP (1<<11)
SYS	TEM_SUB_ERROR	1u			Specifies the reason of emergency stop SUB_ERR_I2C_ERRORS = 1, // High rate of I2C errors SUB_ERR_DRV_OTW = 2, // Driver over-temperature protection SUB_ERR_DRV_FAULT = 3, // Driver fault (under- voltage, over-current, short circuit) SUB_ERR_ENCODER_IMU_ANGLE = 4, // Encoder/IMU angles mismatch SUB_ERR_CALIBRATION_FAILED = 5, // Auto calibration process caused serious fault

SUB_ERR_INTERNAL_SYSTEM_ERROR = 6, // Stack is damaged SUB ERR ENCODER_CALIB_BAD_SCALE = 7, // estimated scale differs a lot from configured SUB ERR OVER TEMPERATURE = 8, // MCU or power board over temperature SUB ERR BAD MOTOR POLES INVERT = 9, // motor n.poles or inversion is wrong SUB ERR NOT ENOUGH MEMORY = 10, // static malloc() can't allocate memory SUB ERR IMU SENSOR NOT RESPONDING = 11, // lost connection to IMU sensor SUB_ERR_CAN_HARD = 12, // CAN on board hardware error SUB ERR MOTOR OVERHEAT PROTECTION = 13, // overheat protection is triggered SUB_ERR_MOTOR_IS_LOCKED = 14, // motor is locked during automated task SUB_ERR_BAD_IMU_HEALTH = 15, // IMU gyroscope and accelerometer error is too big: sensor sends corrupted data or wrong use conditions SUB_ERR_INFINITE_RESET = 16, // Infinite reset loop is detected SUB ERR WRONG INITIAL POSITION = 17, // wrong position: failed to detect encoder angle, or angle is outside soft limits SUB_ERR_MOTOR_LOAD_TIME_EXCEEDED = 18, // motors are fully loaded too long time SUB_ERR_CAN_DRV_OVERCURRENT = 19, // hardware short-circuit protection SUB_ERR_CAN_DRV_UNDERVOLTAGE = 20, // hardware or software undervoltage protection SUB ERR CAN DRV EMERGENCY PIN = 21, // external emergency is triggered SUB_ERR_CAN_DRV_FOC_DURATION = 22, // FOC algorithm duration error SUB ERR CAN DRV MCU OVERHEAT = 23, // driver temperature is to high SUB_ERR_CAN_DRV_MOTOR_OVERHEAT = 24, // motor temperature is to high SUB ERR CAN DRV OVERCURRENT SOFT = 25, // current through motor exceed limit SUB_ERR_CAN_DRV_SEVERAL = 26, //several errors on driver SUB_ERR_CAN_EXT_BUS_OFF = 27, // CAN bus high rate errors of slave controller SUB_ERR_CAN_INT_BUS_OFF = 28, // CAN bus high rate errors of main controller SUB_ERR_ENCODER_NOT_FOUND = 29, // no any answer from encoder during init SUB_ERR_CAN_DRV_NOT_RESPONDING = 30, // lost connection to CAN Drv SUB ERR CAN DRV WRONG PARAMS = 31, // some params of CAN Drv isn't correct SUB_ERR_OVERCURRENT = 32, // fast over current protection of main controller, or short circuit detection on startup SUB_ERR_UNSAFE_VOLTAGE = 33, // Under voltage protection or supply protection controller fault SUB_ERR_WRONG_FULL_BAT_VOLTAGE_PARAM = 34, //battery voltage is higher than expected at startup sequence

				SUB_ERR_EEPROM_PARAMS_CORRUPTED = 35, // parameters are corrupted in EEPROM and can't be restored from backup slot
RESERVED	3b			
RC_ROLL RC_PITCH RC_YAW	2s 2s 2s	1000	2000	RC control channels values (PWM or normalized analog)
RC_CMD	2s	1000	2000	RC command channel value (PWM or normalized analog)
EXT_FC_ROLL EXT_FC_PITCH	2s 2s	1000	2000	External FC PWM values. May be zero if their inputs are mapped to RC control or command.
IMU_ANGLE[3]	2s*3	-32768	32767	IMU angles in 14-bit resolution per full turn
				Units: 0,02197265625 degree
FRAME_IMU_ANGLE[3]	2s*3	-32768	32767	Angles measured by the second IMU (if present), in 14-bit resolution.
				Units: 0,02197265625 degree
TARGET_ANGLE[3]	2s*3	-32768	32767	Target angles, in 14-bit resolution
				Units: 0,02197265625 degree
CYCLE_TIME	2u			Units: microseconds
I2C_ERROR_COUNT	2u			Number of registered errors on I2C bus
ERROR_CODE	1u			deprecated, replaced by the SYSTEM_ERROR variable
BAT_LEVEL	2u			Battery voltage Units: 0.01 volt
RT_DATA_FLAGS	1u			bit0 set - motors are turned ON
CUR_IMU	1u			Currently selected IMU that provides angles and raw sensor data IMU_TYPE_MAIN=1 IMU_TYPE_FRAME=2
CUR_PROFILE	1u	0	4	Currently selected profile
MOTOR_POWER[3]	1u*3	0	255	

CMD_REALTIME_DATA_4 - receive extended version of real-time data

Name	Туре	Min	Max	Possible values, remarks		
The beginning of the message includes all data from the CMD_REALTIME_DATA_3						
STATOR_ROTOR_ANGLE[3]	2s*3			Relative angle for joints between two arms of gimbal structure, measured by encoder (with offset and gearing calibration is applied), by 2 nd IMU or by other algorithms. Value 0 corresponds to normal position (each arms forms 90 degrees with the next order arm). <i>Units:</i> 0,02197265625 degree		
RESERVED	1b					

BALANCE_ERROR[3]	2s*3	-512	512	Error in balance (0 – perfect balance, 512 - 100% of the motor power is required to hold a camera)
CURRENT	2u			Actual current consumption. Units: mA
MAG_DATA[3]	2s*3	-1000	1000	Raw data from magnetometer Units: relative, calibrated for current environment to give ±1000 for each axis.
IMU_TEMPERATURE FRAME_IMU_TEMPERATU RE	1s 1s	-127	127	Temperature of IMU sensors. Units: Celsius
IMU_G_ERR	1u	0	255	Error between estimated gravity vector and reference vector for currently active IMU Units: 0.1 degree
IMU_H_ERR	1u	0	255	Error between estimated heading vector and reference vector for currently active IMU Units: 0.1 degree
MOTOR_OUT[3]	2s*3	-10000	10000	Motor effective output, proportional to torque. Max. value of ±10000 equals to applying full power. (encoder firmware ver. 2.61+)
RESERVED	30b			

CMD_CONFIRM – confirmation of previous command or finished calibration

Name	Туре	Min	Max	Possible values, remarks
CMD_ID	1u			Command ID to confirm
DATA	1u or 2u			DATA depends on command to be confirmed

CMD_ERROR - error executing previous command

Data depends on error type.

Name	Туре	Min	Max	Possible values, remarks
ERROR_CODE	1u			
ERROR_DATA	4b			

CMD_GET_ANGLES - Information about actual gimbal control state

Na	me	Туре	Min	Max	Possible values, remarks
(13)	IMU_ANGLE	2s			IMU angles in 14-bit resolution per full turn Units: 0,02197265625 degree
axis =	TARGET_ANGLE	2s			Target angles, in 14-bit resolution Units: 0,02197265625 degree

TARGET_SPEED	2s		Target speed that gimbal should keep, over Euler axes
			Units: 0,1220740379 degree/sec

CMD_GET_ANGLES_EXT - Information about angles in different format

Naı	me	Туре	Min	Max	Possible values, remarks
	IMU_ANGLE	2s			IMU angles in 14-bit resolution per full turn Units: 0,02197265625 degree
3)	TARGET_ANGLE	2s			Target angles, in 14-bit resolution Units: 0,02197265625 degree
axis = (1	STATOR_ROTOR_ANG LE	4s			Relative angle for joints between two arms of gimbal structure, measured by encoder or 2 nd IMU. Value 0 corresponds to normal position of a gimbal. This angle does not overflow after multiple turns. Units: 0,02197265625 degree
	RESERVED	10b			

CMD_READ_PROFILE_NAMES – receive profile names from EEPROM

Name	Туре	Min	Max	Possible values, remarks
PROFILE_NAME[5]	48b* 5			Each name is encoded in UTF-8 format and padded with '\0' character to 48 byte size

CMD_I2C_READ_REG_BUF - result of reading from I2C device

Name	Туре	Min	Max	Possible values, remarks
DATA	1255b			Data length depends on the DATA_LEN parameter in the request.

CMD_AUTO_PID - progress of PID auto tuning

This command is sent by the controller during the automatic PID tuning, if requested.

Nam	e	Туре	Min	Max	Possible values, remarks
P[3]		1u*3			
I[3]		1u*3			
D[3]		1u*3			
LPF_	LPF_FREQ[3]				
ITER	ATION_CNT	2u			
.3)	TRACKING_ERROR	float			Current error between the target and actual system response
axis = (1	RESERVED	6b			
RESI	ERVED	10b			

CMD_DEBUG_VARS_INFO_3 - receive a specification of the debug variables

Na	me	Туре	Min	Max	Possible values, remarks
DE	BUG_VARS_NUM	1u	1	255	Number of variables in this messages
	VAR_NAME	string			1st byte is size, following by the ASCII characters. Note that '\0' character is not required at the end of the string.
var = (1DEBUG_VARS_NUM)	VAR_TYPE	1u			O3bits - type: VAR_TYPE_UINT8 = 1 VAR_TYPE_INT8 = 2 VAR_TYPE_UINT16 = 3 VAR_TYPE_INT16 = 4 VAR_TYPE_UINT32 = 5 VAR_TYPE_INT32 = 6 VAR_TYPE_FLOAT = 7 (IEEE-754) 47bits - flags: VAR_FLAG_ROLL = 16 its belong to ROLL axis VAR_FLAG_PITCH = 32 its belong to PITCH axis VAR_FLAG_YAW = 48 its belong to YAW axis VAR_FLAG_ANGLE14 = 64 its an angle (14bit per turn)
	RESERVED	2b			

CMD_DEBUG_VARS_3 - values of debug variables reflecting a state of the system.

The number of variables and their types are not strictly defined and may vary depending on the firmware version. Use CMD_DEBUG_VARS_INFO_3 to obtain a specification of the variables in run-time.

Name	Туре	Min	Max	Possible values, remarks
VAR_VALUE[N]	?		l .	size and type of each variable is encoded by the CMD_DEBUG_VARS_INFO_3 structure

CMD_READ_EXTERNAL_DATA - receive user data, stored in the EEPROM

External systems can use this area to store their configurations.

Name	Туре	Min	Max	Possible values, remarks
DATA	128b			

CMD_SET_ADJ_VARS_VAL - receive the values of adjustable variables.

See corresponding outgoing command for format description.

CMD_READ_ADJ_VARS_CFG - receive the configuration for adjustable variables

There are 10 "trigger" slots and 15 "analog" slots. "Trigger" type is used to execute action depending on the RC signal level, where full range is split into 5 levels. "Analog" type is used to adjust parameter by RC signal. MIN_VAL and MAX_VAL specify a working range, that is mapped to a native range of particular parameter.

Nar	ne	Туре	Min	Max	Possible values, remarks
10)	TRIGGER_SRC_CH	1u			See the RC_MAP_ROLL parameter definition
slot = (1	TRIGGER_ACTION[5]	1u*5			See the CMD_EXECUTE_MENU command for a list of available actions
	ANALOG_SRC_CH	1u			See the RC_MAP_ROLL parameter definition
(115)	VAR_ID	1u			bits06: the ID of variable. Full list of adjustable variables is given in the Appendix B
slot =					bit7: if set, the value is processed as a "multiplier" for a given variable. (frw. ver. 2.62b6+)
	MIN_VAL	1u			
	MAX_VAL	1u			
RE	SERVED	8b			

CMD_RESET - notification on device reset

Device sent this command when goes to reset. There is a delay 1000ms after this command is sent and reset is actually done. External application can free up resources and properly close the serial connection.

CMD_EEPROM_READ - receive a portion of data read from EEPROM at the specified address.

Name	Туре	Min	Max	Possible values, remarks
ADDR	4u			Address of a portion of data, 64-byte aligned
DATA	?			All remaining bytes are counted as data. Size is specified in the CMD_EEPROM_READ outgoing command.

CMD_CALIB_INFO - receive information required for the "Calibration helper" dialog window.

Name	Туре	Min	Max	Possible values, remarks
PROGRESS	1u	0	100	Progress of operation in percents
IMU_TYPE	1u			1 – main IMU, 2 – frame IMU
ACC_DATA[3]	2s*3			Data from the accelerometer sensor with the calibrations applied. Units: 1/512 G
GYRO_ABS_VAL	2u			Amplitude of gyro signal
ACC_CUR_AXIS	1u	0	2	ACC axis to be calibrated

ACC_LIMITS_INFO	1u			Bit set of calibrated limits, where bits 05 corresponds to the index in array [+X,-X,+Y,-Y,+Z,-Z]
IMU_TEMP_CELS	1s	-127	127	IMU temperature, Celsius
TEMP_CALIB_GYRO_ENAB LED	1u	0	1	Set to 1 if gyro temperature calibration is enabled
TEMP_CALIB_GYRO_T_MI N_CELS TEMP_CALIB_GYRO_T_MA X_CELS	1s 1s	-127	127	Range of temperature calibration Units: Celsius
TEMP_CALIB_ACC_ENABL ED				Set to 1 if ACC temperature calibration is enabled
TEMP_CALIB_ACC_SLOT_ NUM[6]	1u*6	0	3	The number of calibrated temperature slots for accelerometer for each limit, in order [+X,+Y,+Z,-X,-Y,-Z]
TEMP_CALIB_ACC_T_MIN_ CELS TEMP_CALIB_ACC_T_MAX _CELS	1s 1s			Range of temperature calibration Units: Celsius
H_ERR_LENGTH	1u	0	255	The length of error vector between estimated and referenced heading vectors. Unit vector=100
RESERVED	7b			

CMD_READ_FILE - result of reading file from internal filesystem

In case of success:

in dade of dadeed.						
Name	Туре	Min	Max	Possible values, remarks		
FILE_SIZE	2u			total size of file, bytes		
PAGE_OFFSET	2u			offset that was requested, in pages. 1 page = 64 bytes		
DATA	?			size that was requested, or less if the end of file is reached		

In case of errors:

Name	Туре	Min	Max	Possible values, remarks
ERR_CODE	1u			see error definitions in the CMD_WRITE_FILE command

CMD_SCRIPT_DEBUG - state of execution of user-written script

Name	Туре	Min	Max	Possible values, remarks
CMD_COUNT	2u			current command counter
ERR_CODE	1u			see error definitions in the CMD_WRITE_FILE command

CMD_AHRS_HELPER - current attitude in vector form.

Name	Туре	Min	Max	Possible values, remarks

Z_VECT[3]	4f*3	-1.0f	1.0f	Unit vector that points down (Z-axis in normal position)
H_VECT[3]	4f*3	-1.0f	1.0f	Unit vector that points towards North (Y-axis in normal position)

CMD_REALTIME_DATA_CUSTOM – configurable realtime data (frw. ver. 2.60+)

Name	Туре	Min	Max	Possible values, remarks				
TIMESTAMP_MS	2u			Timestamp in milliseconds				
The set of varaibles below de specifications	The set of varaibles below depends on requested data, see the CMD_REALTIME_DATA_CUSTOM request specifications							
IMU_ANGLES[3]	2s*3			Main IMU angles (Euler) Units: 0,02197265625 degree.				
TARGET_ANGLES[3]	2s*3			Target angles that gimbal should keep (Euler) Units: 0,02197265625 degree.				
TARGET_SPEED[3]	2s*3			Target speed that gimbal should keep, over Euler axes Units: 0,06103701895 degree/sec				
STATOR_ROTOR_ANGLE[3]	2s*3			Relative angle of joints (motors) Units: 0,02197265625 degree.				
GYRO_DATA[3]	2s*3			Data from the gyroscope sensor with the calibrations applied. Units: 0,06103701895 degree/sec.				
RC_DATA[6]	2s*6			RC data in high resolution, assigned to the ROLL, PITCH, YAW, CMD, FC_ROLL, FC_PITCH inputs. Units: normal range is -1638416384, -32768 is for 'undefined' signal				
Z_VECTOR[3] H_VECTOR[3]	4f*6	-1.0f	1.0f	IMU attitude in a form of rotation matrix (2 rows as gravity and heading vectors, 3 rd row can be calculated as cross-product of them).				
RC_CHANNELS[18]	2s*18			All RC channels captured from s-bus, spektrum or Sum-PPM inputs. Mapped to -1638416384, -32768 is for 'undefined' signal				
ACC_DATA[3]	2s*3			Data from the accelerometer sensor with the calibrations applied. Units: 1/512 G				
AHRS_DEBUG_INFO	26b			See the AHRS_DEBUG_INFO specification				
MOTOR4_CONTROL	8b			See the MOTOR4_CONTROL specification				
ENCODER_RAW24[3]	3b*3			Encoder raw angles in a high resolution (24bit per full turn), 3 bytes for each encoder in a sequence for ROLL, PITCH, YAW motors, lower byte first. Total 9 bytes. (frw. ver. 2.68+)				
IMU_ANGLES_RAD[3]	4f*3	-Pi	Pi	Main IMU Euler angles in radians (frw. ver. 2.68b7+)				

AHRS_DEBUG_INFO - information about the AHRS state (frw.ver. 2.66+)

It's not a separate command. This structure is included as a part of other commands. Total size is 26 bytes.

Name	Туре	Min	Max	Possible values, remarks

MAIN_IMU_REF_SRC	1u			Encodes the source of the reference information for the main IMU: bits 02: attitude reference source bits 35: heading reference source bit6: if set, internal sensor is connected and used; otherwise, AHRS information is set externally bit7: if set, the processing of this IMU is enabled Possible values for reference sources: REF_NO = 0 - no reference REF_INTERNAL = 1 - reference is provided by the internal sensor like accelerometer or magnetometer REF_EXTERNAL = 2 - reference is set externally by the serial API or external IMU REF_TRANSLATE = 3 - translate reference from other IMU (frame -> main, main -> frame)
FRAME_IMU_REF_SRC	1u			The same structure as for the main IMU.
MAIN_IMU_Z_REF_ERR	1u			Error between the reference defined by the MAIN_IMU_REF_SRC, and the estimated attitude Units: 0.1°
MAIN_IMU_H_REF_ERR	1u			Error between the reference defined by the MAIN_IMU_REF_SRC, and the estimated heading Units: 0.1°
FRAME_IMU_Z_REF_ERR	1u			Error between the reference defined by the FRAME_IMU_REF_SRC, and the estimated attitude Units: 0.1°
FRAME_IMU_H_REF_ERR	1u			Error between the reference defined by the FRAME_IMU_REF_SRC, and the estimated heading Units: 0.1°
EXT_IMU_STATUS	1u			bits 02 for status: STATUS_DISABLED = 0 STATUS_NOT_CONNECTED = 1 STATUS_UNKNOWN = 2 STATUS_ERROR = 3 STATUS_BAD = 4 STATUS_COARSE = 5 STATUS_GOOD = 6 STATUS_FINE = 7 (values 47 encode the quality of the attitude estimation) bits 37 for flags: STATUS_FLAG_BAD_MAG = (1<<6) = 0x40 STATUS_FLAG_NO_GPS_SIGNAL = (1<<7) = 0x80
EXT_IMU_PACKETS_RECE IVED_CNT	2u	0	65535	
EXT_IMU_PARSE_ERR_CN T	2u	0	65535	
EXT_CORR_H_ERR	1u			Difference between the externally referenced heading and the current heading Units: 0.1°
EXT_CORR_Z_ERR	1u			Difference between the externally referenced attitude and the current attitude <i>Units:</i> 0.1°

MOTOR4_CONTROL - provides data for the external controller of the 4th axis motor (*frw.ver.* 2.68+)

It's not a separate command. This structure is included as a part of other commands.

Name	Туре	Min	Max	Possible values, remarks
FF_SPEED	2s			Feed-forward control Units: 0,06103701895 degree/sec
ANGLE_ERROR	2s			Distance to reach the target angle of 4 th axis <i>Units: 0,02197265625 degree</i>
PID_OUT	4f			The output of the internal PID loop running over the ANGLE_ERROR with the FF_SPEED mixed, scaled by the 'scale factor' parameter.

CMD_ADJ_VARS_STATE - receive the state of adjustable variables

Name	Туре	Min	Max	Possible values, remarks					
Firmware ver. prior to 2.62b5	Firmware ver. prior to 2.62b5								
TRIGGER_RC_DATA	2s	-500	500	RC signal for the "trigger" variable slot					
TRIGGER_ACTION	1u	0	255	ID of the triggered action. The full set of actions is given in the specification of MENU_CMD_15 parameters					
ANALOG_RC_DATA	2s	-500	500	RC signal for the "analog" variable slot					
ANALOG_VALUE	4s			Current value of the variable after all calculations					
RESERVED	6b								
Firmware ver. 2.62b5+									
TRIGGER_RC_DATA	2s	-16384	16384	RC signal for the "trigger" variable slot					
TRIGGER_ACTION	1u	0	255	ID of the triggered action. The full set of actions is given in the specification of MENU_CMD_15 parameters					
ANALOG_SRC_VALUE	2s	-16384	16384	Signal value requested in the ANALOG_SRC_ID					
ANALOG_VAR_VALUE	4f			Value of variable requested in the ANALOG_VAR_ID					
LUT_SRC_VALUE	2s	-16384	16384	Signal value requested in the LUT_SRC_ID. Always encoded in a range -1638416384.					
LUT_VAR_VALUE	4f			Current value of variable requested in the LUT_VAR_ID					

CMD_READ_RC_INPUTS - answer to the requested RC sources

Name	Туре	Min	Max	Possible values, remarks
RC_VAL[N]	2s*N	-16384		Values for each RC source in order as requested in the incoming CMD_READ_RC_INPUTS command. A special value RC_UNDEF=-32767 returned if signal is absent.

CMD_EVENT – sent when event is triggered (frw.ver. 2.65+)

Name	Туре	Min	Max	Possible values, remarks
EVENT_ID	1u			EVENT_ID_MENU_BUTTON = 1 generated on the menu buttons press, hold or release actions. For the "hold" state, command is sent serially with the given interval. Supported types: EVENT_TYPE_OFF, EVENT_TYPE_ON, EVENT_TYPE_HOLD EVENT_ID_MOTOR_STATE = 2 generated on the motors ON/OFF action. Supported types: EVENT_TYPE_OFF, EVENT_TYPE_ON. EVENT_ID_EMERGENCY_STOP = 3 generated on the emergency stop error. Supported types: EVENT_TYPE_OFF, EVENT_TYPE_ON EVENT_ID_CAMERA = 4 generated on the menu commands "Camera Rec[Photo] event" Supported types: EVENT_TYPE_REC_PHOTO, EVENT_TYPE_PHOTO EVENT_ID_SCRIPT = 5 (frw. ver. 2.68b8+) generated on script start (EVENT_TYPE_ON) and finish (EVENT_TYPE_OFF). PARAM1 holds the slot from where the script is executed.
EVENT_TYPE	1u			Possible value and its meaning depends on the EVENT_ID parameter. EVENT_TYPE_OFF = 1 state changed to OFF (button is released, motor is turned OFF) EVENT_TYPE_ON = 2 state is changed to ON (button is pressed, motors is turned ON) EVENT_TYPE_HOLD = 4 state is remaining ON (button is held). EVENT_TYPE_REC_PHOTO = 1 EVENT_TYPE_REC_PHOTO = 2 menu commands "Camera Rec/Photo event" and "Camera photo event"
PARAM1 NOTE: this command may be	2b	ded by ex	tra para	Possible value and its meaning depends on the EVENT_ID and EVENT_TYPE parameters: EVENT_ID_MENU_BUTTON for the "release" and "hold" events, encodes the time period when the button was held (unsigned value in milliseconds) EVENT_ID_SCRIPT slot from where the script is executed, starting from 0.

CMD_EXT_IMU_DEBUG_INFO – debug information for the external IMU sensor (frw.ver. 2.66+)

Name	Туре	Min	Max	Possible values, remarks
AHRS_DEBUG_INFO	26b			See the AHRS_DEBUG_INFO specification
DCM	9*4f	-1.0f	1.0f	Rotation matrix (DCM) received from the external IMU and converted to the (END) (East-North-Down) coordinates.
ACC_BODY	3*4f			Linear acceleration (with the gravity vector subtracted) in sensor's local coordinates.

CMD_SIGN_MESSAGE - result of message signing

Name	Туре	Min	Max	Possible values, remarks
SIGNATURE	32b			Signed message

CMD_EXT_IMU_CMD - forward message received from the connected external IMU sensor

Basecam GPS_IMU

Name	Туре	Min	Max	Possible values, remarks
CMD_ID	1u			Command ID (see GPS_IMU API specification for available commands)
DATA				Payload

The response from the external IMU will be sent back in the CMD_EXT_IMU_CMD incoming command.

Outgoing commands

CMD_BOARD_INFO - request board and firmware information

Simple format: no parameters

Extended format:

Name	Туре	Min	Max	Possible values, remarks
CFG	2b			configuration for this serial driver: • for UARTs – period (in ms) between 20-bytes packets for BLE mode • for USB – not used
RESERVED	?			size is not checked

CMD_BOARD_INFO_3 - request additional board information

No parameters

CMD_REALTIME_DATA,
CMD_REALTIME_DATA_3 - request real-time data, response is CMD_REALTIME_DATA_3

No parameters

CMD_REALTIME_DATA_4 - request extended real-time data, response is CMD_REALTIME_DATA_4

No parameters

CMD_CALIB_ACC - calibrate accelerometer CMD_CALIB_GYRO - calibrate gyroscope CMD_CALIB_MAG - calibrate magnetometer

Simple format: no parameters. Starts regular calibration of currently active IMU, selected by the CMD_SELECT_IMU_3 command.

Extended format:

Name	Туре	Min	Max	Possible values, remarks
IMU_IDX	1u			(0 – currently active IMU, 1 – main IMU, 2 – frame IMU)
ACTION	1u			1 – do regular calibration 2 – reset all calibrations and restart 3 – do temperature calibration 4 – enable temp. calib. data, if present, and restart 5 – disable temp. calib. data (but keep in memory), and restart 6 – copy calibration from the sensor's EEPROM to the main EEPROM ("restore factory calibration" option) 7 – copy calibration from the main EEPROM to the sensor's EEPROM

RESERVED	10b		

If all parameters are valid, confirmation is sent immediately on reception and in the end of calibration.

CMD_CALIB_EXT_GAIN - calibrate EXT_FC gains

No parameters

CMD_USE_DEFAULTS - reset to factory defaults

Name	Туре	Min	Max	Possible values, remarks
PROFILE_ID	1u	0	4	profile ID to reset. Special values: 253 – erase EEPROM 254 – reset currently selected profile

CMD_CALIB_POLES - calibrate poles and direction

No parameters

CMD_READ_RC_INPUTS - read values for the selected RC inputs

Name	Туре	Min	Max	Possible values, remarks
CFG_FLAGS	2u			bit0: try to initialize input, if it was not used by the controller and was not initialized.
RC_SRC[N]	1u*N			List of signal sources. Possible values are listed in the RC_MAP_ROLL parameter.

In response, CMD_READ_RC_INPUTS is returned with the values for the requested RC sources.

CMD READ PARAMS,

CMD_READ_PARAMS_3 - request parameters from the board

CMD_READ_PARAMS_EXT - request extended parameters part1

CMD_READ_PARAMS_EXT2 - request extended parameters part2

CMD_READ_PARAMS_EXT3 - request extended parameters part3 (frw.ver. 2.66+)

Name	Туре	Min	Max	Possible values, remarks
PROFILE_ID	1u	0		profile ID to load. If value >4, currently selected profile is loaded.

CMD WRITE PARAMS,

CMD WRITE PARAMS 3 - write parameters to board and saves to EEPROM

CMD_WRITE_PARAMS_EXT - write extended parameters part1

CMD_WRITE_PARAMS_EXT2 - write extended parameters part2

CMD WRITE PARAMS EXT3 - write extended parameters part3 (frw.ver. 2.66+)

Data structure is the same as for the corresponding CMD_READ_PARAMS_xx incoming command.

CMD_RESET - reset device

Simple format: no parameters. Resets the device without delay and confirmation

Extended format:

Name	Туре	Min	Max	Possible values, remarks
CONFIRM	1u			0 – no confirmation 1 - command CMD_RESET will be sent back for confirmation
DELAY_MS	2u			After confirmation is sent, waits for a given time (in ms) before reset.

CMD_BOOT_MODE_3 – enter bootloader mode to upload firmware

Simple format: no parameters. Enters boot mode without delay and confirmation

Extended format:

Name	Туре	Min	Max	Possible values, remarks
CONFIRM	1u			0 – no confirmation 1 - command CMD_RESET will be sent back for confirmation
DELAY_MS	2u			After confirmation is sent, waits for a given time (in ms) before reset. External application can free up resources and properly close the serial connection before controller enters boot mode.

CMD_CALIB_OFFSET – calibrate follow offset

No parameters

CMD_CALIB_BAT - calibrate internal voltage sensor

Name	Туре	Min	Max	Possible values, remarks
ACTUAL_VOLTAGE	2u			Units: 0.01V

Confirmation is sent.

CMD_CONTROL - control gimbal movement

Name	Туре	Min	Max	Possible values, remarks
Legacy format: mode is comn	on for	all axes		
CONTROL_MODE	1u			Bits 03 for mode, bits 47 for flags.
				Modes:
				MODE_NO_CONTROL=0 If this mode is set for all axes, finish serial control and restore normal RC control. If set for single axis, does not change its current control mode.
				MODE_SPEED=1 Camera travels with the given speed in the Euler coordinates until the next CMD_CONTROL command comes. Given angle is ignored.
				MODE_ANGLE=2* Camera travels to the given Euler angle with the fixed speed. Speed is decreased near target to keep control smooth. Low-pass filter may be applied for the same reason.
				MODE_SPEED_ANGLE=3 Camera travels with the given speed. Additionally, controller keeps the given angle and fix accumulated error by the outer PI-loop. This mode allows the most precise type of control (see fig.1 for example), but it requires pretty fast update rate to keep it smooth, or apply low-pass filtering for speed and angle.
				MODE_RC=4* The ANGLE parameter is used as RC signal and overrides any other signal source, assigned to this axis. Normal working range is -500500. A special value -10000 encodes a "signal lost" condition. The flag CONTROL_FLAG_AUTO_TASK can affect this mode (see below). Prior to 2.61 frw. ver., 'SPEED' parameter is ignored.
				MODE_RC_HIGH_RES=6* (frw. ver. 2.66b2+) The same as the MODE_RC, but the range of the ANGLE parameter has better resolution: -1638416384. A special value -32768 encodes a "signal lost" condition.
				MODE_ANGLE_REL_FRAME=5* First, the neutral point of a camera relative to a frame is found in the Euler coordinates for a given axis. Than, the given angle (in ±360° range) is added to this point, and camera travels to it. Note that the given angle does not relate to a particular motor, it relates to global Euler angles!
				Flags: CONTROL_FLAG_AUTO_TASK=(1<<6) (frw. ver. 2.62b7+) If mode is one of the CMODE_ANGLE
				 If mode is one of the <mode_angle,< li=""> MODE_ANGLE_REL_FRAME>, the task is processed with </mode_angle,<>

Fxt	tended format (firmware ve	r 2 55	h5+): moc	de is set	the speed and acceleration configured for automated tasks. If the SPEED parameter is provided, it's used instead. When all target angles are reached with the 1-degree tolerance, confirmation is sent: CMD_CONFIRM(CMD_CONTROL, 1). Use this flag to move gimbal to a certain position as fast as possible, and receive confirmation when the target is reached. CONTROL_FLAG_FORCE_RC_SPEED=(1<<6) (frw. ver. 2.62b7+) If mode is MODE_RC, this flag forces a control in the "SPEED" mode, with the dead-band, trimming and inversion settings are NOT applied to the provided RC signal, but the LPF, Expo curve and ACC limiter are still applied. Use this flag to control gimbal from remote applications, where signal is well-defined and you need to have a direction of rotation that does not depend on gimbal's "Inverse" and "Mode" parameters. CONTROL_FLAG_HIGH_RES_SPEED=(1<<7) (frw.ver 2.60+) Speed units changed to 0.001 deg/sec for extremely slow motion (like timelapse shooting) * In the control modes "MODE_ANGLE", "MODE_RC", and "MODE_ANGLE_REL_FRAME", if the "SPEED" parameter is not provided (set to zero), the speed is defined by the RC settings. Relationship: SPEED = settings.RC_SPEED*16.		
Extended format (firmware ver. 2.55b5+): mode is set independently for each axes CONTROL_MODE[3] 1u*3 see definition above							
The	e remaining part is commor	n for al	l formats				
axis = (13)	SPEED	2s	-	-	Speed of rotation. Overrides the speed settings in the GUI and from the adjustable variables. Notes: If the acceleration limiter is enabled in the RC settings, the actual speed is filtered by it; For the modes "MODE_ANGLE", "MODE_RC", "MODE_ANGLE_REL_FRAME", the value may be omitted (set to 0). if this case, speed is taken from the RC settings; Also, in these modes, the actual speed is decreased near target to prevent jerks when the ANGLE parameter given with the high rate, changes slowly; Units: 0,1220740379 deg./sec. (0.001 deg./sec., if the CONTROL_FLAG_HIGH_RES_SPEED is set)		
Not	ANGLE tes:	2s	-32768	32767	Depends on the MODE parameter: • MODE_ANGLE, MODE_SPEED_ANGLE: encodes the target angle • MODE_SPEED: ignored • MODE_RC: encodes RC signal in range -500500 • MODE_RC_HIGH_RES: encodes RC signal in range -1638416384 Units: 0,02197265625 degree.		

- Serial control overrides RC control. To switch back to RC, send this command with the mode=0 for all axes, and all data set to zeros. All parameters that was changed by the CMD_CONTROL_CONFIG, will be restored to their default values.
 - (Firmware 2.68b9): sending command with the MODE=0 for particular axis returns to normal mode only this axis, but do not reset all parameters that are common for all axes.
- Optimal rate of sending this command is 50..125Hz. If the rate of CMD_CONTROL command is lower, use a low-pass filtering to prevent step-wise response. It can be set by the command CMD_CONTROL_CONFIG.
- Confirmation is sent on each CMD_CONTROL command. Additional confirmation is sent when the target angle is reached, if the flag "CONTROL_FLAG_AUTO_TASK" is set.
- Automated tasks has greater priority then CMD_CONTROL. For example, executing menu command "Level ROLL to horizon" overrides CMD_CONTROL for ROLL axis until task is finished.
- See the <u>Appendix A</u> for a source code examples

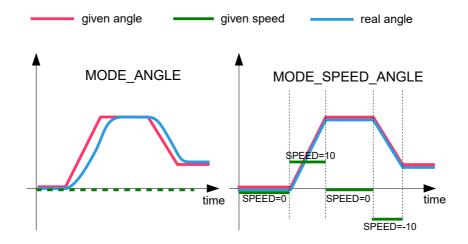


Fig.1: difference in control modes MODE_ANGLE and MODE_SPEED_ANGLE

CMD_CONTROL_CONFIG – configure the handling of CMD_CONTROL command (frw. ver. 2.61+)

Name	Туре	Min	Max	Possible values, remarks
TIMEOUT_MS	2u	0	65535	0 - disable timeout >0 - if no CMD_CONTROL command will come in a given time on any channel, serial control will be finished. Default value after startup is 0 (no timeout). Units: ms
CH1_PRIORITY CH2_PRIORITY CH3_PRIORITY CH4_PRIORITY THIS_CH_PRIORITY	1u*5	0	255	Channels are counted in order: UART1, RC_SERIAL, UART2, USB_VCP (how they are named in the User Manual). THIS_CH means current port, where command is sent. Values: 0 - do not change the priority 1255 - set the priority of a given channel. In case of concurrent CMD_CONTROL commands, they will be accepted only on a channel that has higher or equal priority than others. Default value is 0 for all channels after startup.

axis = (13)	ANGLE_LPF	1u	0	15	LPF factor for filtering the 'ANGLE' parameter in the modes "MODE_ANGLE", "MODE_SPEED_ANGLE". Helps to keep smooth control even if update rate is slow. 0 – do not change Default value is 0 – no filtering is applied.
	SPEED_LPF	1u	0	15	LPF factor for filtering the 'SPEED' parameter in the modes "MODE_SPEED", "MODE_SPEED_ANGLE". Helps to keep smooth control even if update rate is slow. 0 – do not change Default value is 0 – no filtering is applied.
	RC_LPF	1u	0	15	LPF factor for filtering RC signal in the mode "MODE_RC". Helps to keep smooth control even if update rate is slow. 0 – do not change. Default value is taken from the "RC_LPF" GUI parameter.
	RESERVED	4b			
RC_	EXPO_RATE	1u	0	100	Exponential curve for filtering RC signal in the mode "MODE_RC". 0 – do not change Default value is taken from the "RC_EXPO_RATE" GUI parameter.
FLA	GS	2u			CONTROL_CONFIG_FLAG_NO_CONFIRM=(1<<0) (frw.ver. 2.66b2+) If set, controller does not send confirmation on each CMD_CONTROL command.
RES	SERVED	10b			

Confirmation is sent on success.

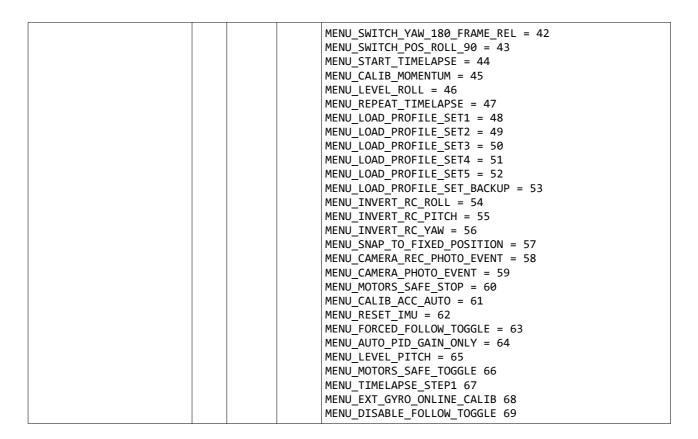
CMD_TRIGGER_PIN - trigger output pin

Name	Туре	Min	Max	Possible values, remarks
PIN_ID	1u			Triggers pin only if it is not used for input RC_INPUT_ROLL = 1 RC_INPUT_PITCH = 2 EXT_FC_INPUT_ROLL = 3 EXT_FC_INPUT_PITCH = 4 RC_INPUT_YAW = 5 PIN_AUX1 = 16 PIN_AUX2 = 17 PIN_AUX3 = 18 PIN_BUZZER = 32 PIN_SSAT_POWER** = 33 ** PIN_SSAT_POWER triggers 3.3V power line in the Spektrum connector (low state enables power)
STATE	1u			LOW = 0 (GND) - pin can sink up to 40mA HIGH = 1 (+3.3V) - pin can source up to 40mA FLOATING = 2 (frw. ver. 2.66+)

Confirmation is sent only if pin is not occupied for other functions and was really triggered.

CMD_MOTORS_ON - switch motors ON

No parameters. Confirmation is sent in response.


CMD_MOTORS_OFF - switch motors OFF

Name	Туре	Min	Max	Possible values, remarks
MODE (frw.ver. 2.68b7+)	1u			0 – normal mode: turn motors OFF leaving driver in a high impedance; 1 – "break mode": turns motors OFF leaving driver in a low impedance; 2 – "safe stop" mode for unbalanced gimbals: reduce power and wait while all motors stop rotating, then power OFF completely.

Confirmation is sent in response.

CMD_EXECUTE_MENU - execute menu command

Name	Туре	Min	Max	Possible values, remarks
CMD_ID	1u			MENU_CMD_NO = 0
				MENU_CMD_PROFILE1 = 1
				MENU_CMD_PROFILE2 = 2
				MENU_CMD_PROFILE3 = 3
				MENU_CMD_SWAP_PITCH_ROLL = 4
				MENU_CMD_SWAP_YAW_ROLL = 5
				MENU_CMD_CALIB_ACC = 6
				MENU_CMD_RESET = 7
				MENU_CMD_SET_ANGLE = 8
				MENU_CMD_CALIB_GYRO = 9
				MENU_CMD_MOTOR_TOGGLE = 10
				MENU_CMD_MOTOR_ON = 11
				MENU_CMD_MOTOR_OFF = 12
				MENU_CMD_FRAME_UPSIDE_DOWN = 13
				MENU_CMD_PROFILE4 = 14
				MENU_CMD_PROFILE5 = 15
				MENU_CMD_AUTO_PID = 16
				MENU_CMD_LOOK_DOWN = 17
				MENU_CMD_HOME_POSITION = 18
				MENU_CMD_RC_BIND = 19
				MENU_CMD_CALIB_GYRO_TEMP = 20
				MENU_CMD_CALIB_ACC_TEMP = 21
				MENU_CMD_BUTTON_PRESS = 22
				MENU_CMD_RUN_SCRIPT1 = 23
				MENU_CMD_RUN_SCRIPT2 = 24
				MENU_CMD_RUN_SCRIPT3 = 25
				MENU_CMD_RUN_SCRIPT4 = 26
				MENU_CMD_RUN_SCRIPT5 = 27
				MENU_CMD_CALIB_MAG = 33
				MENU_CMD_LEVEL_ROLL_PITCH = 34
				MENU_CMD_CENTER_YAW = 35
				MENU_CMD_UNTWIST_CABLES = 36
				MENU_CMD_SET_ANGLE_NO_SAVE = 37
				MENU_HOME_POSITION_SHORTEST = 38
				MENU_CENTER_YAW_SHORTEST = 39
				MENU_ROTATE_YAW_180 = 40
				MENU_ROTATE_YAW_180_FRAME_REL = 41

CMD_HELPER_DATA - provide helper data for AHRS system

Use this command to increase precision of attitude estimation under certain conditions like curved or accelerated motion. More information in the #Appendix C: Providing external reference attitude/heading information from UAV

Legacy format (prior to frw. ver. 2.60):

Name	Туре	Min	Max	Possible values, remarks
FRAME_ACC[3]	2s*3	-	-	Linear acceleration of the frame, [X,Y,Z] components in a coordinate system COORD_SYS_GROUND_YAW_ROTATED (see description below). Units: $1g/512 \approx 0.019160156 \text{ m/s}^2$
FRAME_ANGLE_ROLL FRAME_ANGLE_PITCH	2s 2s	-32768	32767	Inclination of the outer frame in a given coordinate system. Pass zero values to not use this information. Units: 0,02197265625 degree.

Extended format (frw. ver. 2.60+):

Name	Туре	Min	Max	Possible values, remarks
FRAME_ACC[3]	2s*3	-	-	Linear acceleration of the frame, [X,Y,Z] components in a given coordinate system. Units: $1g/512 \approx 0.019160156 \text{ m/s}^2$
FRAME_ANGLE_ROLL FRAME_ANGLE_PITCH	2s 2s	-32768	32767	Inclination of the outer frame in a given coordinate system. Pass zero values to not use this information.

				Units: 0,02197265625 degree.
FLAGS	1u			bits 02: COORD_SYS_GROUND_YAW_ROTATED = 1 Global system rotated with the camera over Z axis: Y-axis is aligned with the main IMU's Y-axis (points forward), X-axis points right, Z-axis points down (nadir) COORD_SYS_GROUND = 2 END Global system: X-axis matches true East ,Y-axis matches true North, Z-axis matches nadir. Notes: END system differs from commonly used NED system. To convert, swap X and Y values in vectors. A magnetometer sensor should be installed and calibrated to give global reference for the main IMU. If no magnetometer present, Y-axis points arbitrary direction, so it is required to additionally provide the FRAME_HEADING parameter and use encoders to allow synchronization of the local coordinate system to earth-related system. COORD_SYS_FRAME = 3 Coordinate system that is linked to the gimbal's outer frame: Y-axis matches frame's "forward", X-axis matches frame's "right", Z-axis matches frame's "down". Note: one of the following conditions should be satisfied: - a 2nd frame-mounted IMU and YAW encoder in the regular firmware - 3 encoders and the "encoder" version of firmware bit7: Use FRAME_HEADING parameter as a heading reference to align the IMU's local coordinate system to earth-related system, or to compensate gyro drift by the YAW axis if frame is fixed. If bit is not set, FRAME_HEADING is ignored (frw. ver. 2.62b7+)
FRAME_SPEED[3]	2s*3	-	-	Angular speed of the frame, [X,Y,Z] components in a given coordinate system. Helps to increase a precision of stabilization in systems w/out encoders or 2 nd IMU. Pass zero values to not use this information.
FRAME_HEADING (frw. ver. 2.62b7+)	2s	-16384	16384	Units: 0,06103701895 degree/sec Angle of the frame relative to the North by the YAW axis. On first occurrence, YAW angle will be updated, taking into account the position of the main IMU relative to a frame. Then it will be used only as a reference for a gyro drift correction. If frame is fixed, it's enough to set this value once. But if frame is moving, it should be update with the high enough rate (10-50Hz) to reflect the rotation. Remarks: *bit7 in the FLAGS parameter should be set to use this value. *Provided angle may be wrapped to +-180 degrees or 0360 degrees. *Special value of 32767 stops the use of this reference and makes IMU heading unreferenced.
RESERVED	1b			Units: 0,02197265625 degree.

For the lateral acceleration compensation, it is enough to provide only the FRAME_ACC data, leaving all other fields empty. Feed fresh ACC and angles data with the pretty low rate 10-20 Hz, because strong low-

pass filter is applied internally. If the FRAME_SPEED data need to be provided, data rate should be much higher, up to 125 Hz.

How to ensure that the ACC correction is applied properly, on the bench:

- 1. Temporarily set the "ACC LPF" filter parameter in the GUI to 5-10Hz it will remove noise but keep fast reaction of the "IMU_G_ERR" variable in the "Monitoring" tab of the GUI. This variable shows the distance between the estimated gravity vector and vector, measured by accelerometer.
- 2. Without motion, when you tilt the frame, the FRAME_ACC vector should have all components close to zero. The IMU G ERR variable should be near zero, too.
- 3. Without correction, when you shake gimbal, you see that the IMU_G_ERR changes significantly. With the correction applied, when you shake gimbal, IMU_G_ERR always stays near zero it means that the external accelerations are compensated.
- 4. When you rotate frame relative to earth in all directions, or rotate camera relative to frame, the 3rd test is still passed correctly it means that the ACC correction vector is translated to the main IMU sensor properly.

CMD_GET_ANGLES, CMD_GET_ANGLES_EXT - Request information related to IMU angles and RC control state

No parameters.

CMD SELECT IMU 3 - Select which IMU to configure

Name	Туре	Min	Max	Possible values, remarks
IMU_TYPE	1u			<pre>IMU_TYPE_MAIN=1 IMU_TYPE_FRAME=2</pre>

If the selected IMU is not connected, command is ignored.

CMD READ PROFILE NAMES 3 - Request profile names stored in EEPROM

No parameters

CMD_WRITE_PROFILE_NAMES_3 - Writes profile names to EEPROM

Name	Туре	Min	Max	Possible values, remarks
PROFILE_NAME[5]	48b* 5			Each name is encoded in UTF-8 format and padded with '\0' character to 48 byte size

CMD_SET_ADJ_VARS_VAL - Update the value of selected parameter(s).

This command is intended to change parameters on-the-fly during system operation, and does not save parameters to EEPROM.

To save updated parameters permanently, use the CMD_SAVE_PARAMS_3 command.

Name	Туре	Min	Max	Possible values, remarks
	<i>J</i> 1			

NU	M_PARAMS	1u	1	40	Number of parameters in command
PARAMS)	PARAM <n>_ID</n>	1u			ID of parameter. See the Appendix B for a list of available variables.
for N = (1NUM_PAF	PARAM <n>_VALUE</n>	4b			Value depends on type of parameter. Values are packed according to C-language memory model, little-endian order. 1- or 2-byte types converted to 4-byte using C-language type conversions. Floats are packed according to IEEE-754.

On success, confirmation is sent in response.

CMD_GET_ADJ_VARS_VAL - Query the actual value of selected parameter(s).

This command requests actual values of adjustable parameters. On success, CMD_SET_ADJ_VARS_VAL is sent in response.

Nai	Name		Min	Max	Possible values, remarks
NU	M_PARAMS	1u	1	40	Number of parameters in command
for N = (1NUM_PARAMS)	PARAM <n>_ID</n>	1u			ID of parameter. See the Appendix B for a list of available variables.

CMD_SAVE_PARAMS_3 – Saves current values of parameters linked to adjustable variables, to EEPROM

Use this command to save parameters updated by the "Adjustable Variables", permanently to EEPROM. For parameters that are split to profiles, only the current profile slot is updated.

Name	Туре	Min	Max	Possible values, remarks
ADJ_VAR_ID_1 ADJ_VAR_ID_2 ADJ_VAR_ID_N	1u*N			frw.ver. 2.68b9+ Optional array of IDs of adjustable variables to save. If not specified, save all active adjustable variables.

CMD_AUTO_PID – Starts automatic PID calibration (frw. ver. prior to 2.70)

Name	Туре	Min	Max	Possible values, remarks
PROFILE_ID	1u			switch to this profile before start of the calibration and save result there
CFG_FLAGS	1u			AUTO_PID_STOP = 0 AUTO_PID_CFG_ROLL = 1 AUTO_PID_CFG_PITCH = 2 AUTO_PID_CFG_SEND_GUI = 8
GAIN_VS_STABILITY	1u	0	255	0 - better stability, 255 - better tracking of a reference
MOMENTUM	1u	0	255	0 - detect automatically, 1 - low weight and strong motor, 255 - big weight and weak motor
ACTION	1u			0 – start tuning
RESERVED	14b			

On start, a confirmation is sent in the command CMD_CONFIRM(CMD_AUTO_PID). When finished, the controller sends a full set of tuned parameters to the GUI (CMD_READ_PARAMS_XX), for the selected or for all profiles.

CMD_AUTO_PID2 - Starts automatic PID calibration ver.2 (frw. ver. 2.70+)

Nar	me	Туре	Min	Max	Possible values, remarks
AC.	TION	1u			ACTION_START=1 start tuning (do not update config in EEPROM) ACTION_START_SAVE=2 save config to EEPROM and start tuning ACTION_SAVE=3 save config to EEPROM ACTION_STOP=5 stop tuning ACTION_READ=6 read config from EEPROM
RE:	SERVED	10b			
The	following data is required	only fo	r ACTION	_STAR	T, ACTION_START_SAVE:
CF	G_VERSION	1u			version 1
; = (13)	AXIS_FLAGS	1u			bit0: this axis is enabled bit1: tune LPF bits23: number of notch filters to tune, 0-3
for axis	GAIN	1u	0	255	stability vs performance ratio
2	STIMULUS	1u	0	255	stimulus signal strength

	EFFECTIVE_FREQ	1u	0	255	Effective frequency, Hz
	PROBLEM_FREQ	1u	0	255	Problematic frequency, Hz
	PROBLEM_MARGIN	1u	0	255	Problematic margin, dB*10
	RESERVED	6b			
GE	NERAL_FLAGS	2u			bit0: start from current values bit1: save result to all profiles bit2: tune gain only bit3: reserved bit4: auto-save
STA	ARTUP_CFG	1u			Automatically run at system startup 0 - Disabled 1 - Tune gain only 2 - Tune all parameters
RE	SERVED	22b			

Confirmation is sent immediately in the command CMD_CONFIRM(CMD_AUTO_PID2).

If error is detected in parameters, CMD_ERROR is sent with the error code:

1: read from EEPROM failed (data is corrupted or empty)

- 2: can't run algorithm at this moment
- 3: write to EEPROM failed
- 4: unknown action
- 5: wrong command size

When finished, the controller sends a full set of tuned parameters to the GUI (CMD_READ_PARAMS_XX), for the current profile.

CMD_SERVO_OUT - Output PWM signal on the specified pins

Name	Туре	Min	Max	Possible values, remarks
SERVO_TIME[8]*	2s*8	-1	20000	value < 0: free up this pin and make it floating value = 0: configure this pin as output and set it to 'Low' state value > 0: PWM pulse time, us. Should be less than PWM period, configured by the "SERVO_RATE" parameter. Regular servo accept values in range about 5002500 us, 1500 us is neutral position, PWM period is 20000 us or less. * Although command takes 8 values, the real number of hardware outputs depends on board version and may be less.

CMD_I2C_WRITE_REG_BUF - writes data to any device connected to I2C line

Name	Туре	Min	Max	Possible values, remarks
DEVICE_ADDR	1u			bit0: I2C port 0 for external port (IMU sensor is connected) 1 for internal port (EEPROM) bit17: I2C address
REG_ADDR	1u			register to write

DATA	?		remaining bytes are counted as data
			3 ,

On successful writing, confirmation CMD_CONFIRM is sent in response.

CMD_I2C_READ_REG_BUF - requests reading from any device connected to I2C line

Name	Туре	Min	Max	Possible values, remarks
DEVICE_ADDR	1u			bit0: I2C port 0 for external port (IMU sensor is connected) 1 for internal port (EEPROM) bit17: I2C address
REG_ADDR	1u			register to write
DATA_LEN	1u			length of data to read

On successful reading, CMD_I2C_READ_REG_BUF command is sent in response.

CMD_DEBUG_VARS_INFO_3 - request information about debug variables

No parameters.

CMD_DEBUG_VARS_3 - request values of debug variables

No parameters.

CMD_WRITE_EXTERNAL_DATA – stores any user data to the dedicated area in the EEPROM

Name	Туре	Min	Max	Possible values, remarks
DATA	128b			

Confirmation is sent on success.

CMD_READ_EXTERNAL_DATA - request user data, stored in the EEPROM

No parameters.

CMD_READ_EXTERNAL_DATA is sent in response.

CMD_API_VIRT_CH_CONTROL – update a state of 32 virtual channels.

These channels are named as "API_VIRT_CHxx" in the GUI and may be assigned as RC source to any task.

Name	Туре	Min	Max	Possible values, remarks
API_VIRT_CH[32]	2s*3 2	-500	500	Value may go slightly outside these limits. Use a special value "-10000" to mark that channel has "undefined" state (its treated as "signal lost" like with the regular

		DC inpute)
		RC Indus)
		· · · · · · · · · · · · · · · · · · ·

CMD_API_VIRT_CH_HIGH_RES – update a state of 32 virtual channels (frw.ver. 2.68b7+)

These channels are named as "API_VIRT_CHxx" in the GUI and may be assigned as RC source to any task. Compared to CMD_API_VIRT_CH_CONTROL, this command has higher resolution and allows to pass variable number of channels (from 1 to 31), to save bandwidth by omitting unused channels.

Name	Туре	Min	Max	Possible values, remarks
API_VIRT_CH1 API_VIRT_CH2	2s	-16384	16384	Value may go slightly outside these limits. Special value -32767 sets channel to undefined state.
API_VIRT_CH31				

CMD_READ_ADJ_VARS_CFG – request configuration of mapping of control inputs to adjustable variables

CMD_READ_ADJ_VARS_CFG incoming command is sent in response.

CMD_WRITE_ADJ_VARS_CFG – writes configuration of mapping of control inputs to adjustable variables

Data format is the same as in corresponding CMD_READ_ADJ_VARS_CFG incoming command. On success, confirmation is sent in response.

CMD_EEPROM_WRITE - writes a block of data to EEPROM to specified address

Name	Туре	Min	Max	Possible values, remarks
ADDR	4u			Address should be aligned to 64
DATA	?			All remaining bytes counted as data, arbitrary size.

On success, confirmation CMD_CONFIRM is sent with parameters CMD_EEPROM_WRITE, ADDR.

CMD_EEPROM_READ – request a reading of block of data from EEPROM at the specified address and size.

Name	Туре	Min	Max	Possible values, remarks
ADDR	4u			address should be aligned to 64
SIZE	2u			size should be aliged to 64 bytes and less than 256

On success, CMD EEPROM READ is sent in response.

CMD_CALIB_INFO - request information required for the "Calibration helper" dialog window

Name	Туре	Min	Max	Possible values, remarks
IMU_TYPE	1u			1 – main IMU, 2 – frame IMU
RESERVED	11b			

On success, CMD_CALIB_INFO is sent in response.

CMD READ FILE - read file from internal filesystem

This command reads a portion of data from a file with the identifier FILE_ID, started at PAGE_OFFSET pages (1page = 64byte) and to the end of file, but not more then MAX_SIZE bytes. Size of a portion should not exceed maximum allowed command data length (256 bytes). The result or error code is sent in the incoming command CMD_READ_FILE.

Name	Туре	Min	Max	Possible values, remarks
FILE_ID	2u			1st byte encodes the file type; 2nd byte depends on type; FILE_TYPE_SCRIPT = 1 FILE_TYPE_IMU_CALIB = 3 FILE_TYPE_COGGING_CORRECTION = 4 FILE_TYPE_ADJ_VAR_LUT = 5 FILE_TYPE_PROFILE_SET = 6 FILE_TYPE_PARAMS = 7 FILE_TYPE_TUNE = 8 FILE_TYPE_CANDRV = 10
PAGE_OFFSET	2u			offset from the beginning, in pages. 1 page = 64 bytes.
MAX_SIZE	2u			
RESERVED	14b			

CMD_WRITE_FILE - write file to internal filesystem

This command writes a portion of data to a file with the identifier FILE_ID. If file is not exists, it is created. If FILE_SIZE is not equal to existing file size, file is adjusted to new size. If DATA is empty, file is deleted.

Name	Туре	Min	Max	Possible values, remarks
FILE_ID	2u			See CMD_READ_FILE.FILE_ID
FILE_SIZE	2u			Full size of a file
PAGE_OFFSET	2u			offset from the beginning, in pages. 1 page = 64 bytes.
DATA	?			All remaining bytes are counted as data. Size should be less then FILE_SIZE parameter. If data is empty, file will be deleted.

In response CMD_CONFIRM is sent, with parameter ERR_CODE. Possible codes:

```
NO_ERROR = 0
ERR_EEPROM_FAULT = 1
ERR_FILE_NOT_FOUND = 2
ERR_FAT = 3
ERR_NO_FREE_SPACE = 4
ERR_FAT_IS_FULL = 5
ERR_FILE_SIZE = 6
ERR_CRC = 7
ERR_LIMIT_REACHED = 8
```

ERR_FILE_CORRUPTED = 9 ERR_WRONG_PARAMS = 10

CMD_FS_CLEAR_ALL - delete all files from internal filesystem

Returns CMD_CONFIRM with parameter ERR_CODE (see definitions in the CMD_WRITE_FILE command)

CMD_RUN_SCRIPT – start or stop user-written script

Name	Туре	Min	Max	Possible values, remarks
MODE	1u			0 – stop 1 – start 2 – start with debug information is sent back in the CMD_SCRIPT_DEBUG
SLOT	1u	0	4	slot number, starting from 0.
RESERVED	32b			

CMD_AHRS_HELPER – send or request attitude of the IMU sensor.

Use this command to provide a reference or replace the attitude estimated by the internal IMU sensor, by the attitude from a high-grade external IMU. Send this command with the 20-50 Hz rate. More information in the #Appendix C: Providing external reference attitude/heading information from UAV

Name	T	N dies	Max	Describle values, remarks
Name	Туре	Min	Max	Possible values, remarks
MODE	1u			bit0: 0 – get, 1 – set bit1: 0 – main IMU, 1 – frame IMU bit2: if set, use as reference. Any internal reference (if present) is disabled. bit3: if set, translate from camera to frame (or back) and use as a reference bit4: if set, use Z-vector only bit5: if set, use H-vector only Below some useful combinations of flags are described in details. GET modes (provided data and other flags are ignored): 0 - request the main IMU attitude 2 - request the frame IMU attitude
				SET modes:
				1 - use as a camera attitude (replace the attitude estimated by the main IMU)
				3 - use as a frame attitude (regardless of 2 nd IMU is enabled or not)
				5 - use as a reference for the main IMU (to correct gyro drift using GYRO_TRUST factor) 7 - use as a reference for the frame IMU
				11 - use as a frame attitude, translate to the camera coordinates and use as a reference for the main IMU. 15 – use as a reference for the frame IMU, translate to the camera coordinates and use as a reference for the main IMU.

				Modes 1,5 should be used if an external AHRS source is installed on the camera's platform. Modes 3,7,11,15 should be used if an external AHRS source is installed on the frame (above all motors).
				Bit3 is taken into account only if all motor angles are known from encoders or may be estimated using other ways.
				Bits 45 can be combined with the previous values to selectively correct/replace only H (heading) or Z (attitude) vectors. For example, you can leave Z corrected by the internal accelerometer, and correct only H (heading) by an external magnetometer.
Z_VECT[3]	4f*3	-1.0f	1.0f	Unit vector that points down in END system (North-East-Down)*
H_VECT[3]	4f*3	-1.0f	1.0f	Unit vector that points towards North in END system (North-East-Down)*

^{*} Note that we use system END that differs from commonly used NED.

CMD_GYRO_CORRECTION - correct the gyroscope sensor's zero bias manually

Name	Туре	Min	Max	Possible values, remarks
IMU_TYPE	1u			0 – main IMU, 1 – frame IMU
GYRO_ZERO_CORR[3]	2s*3			Zero offset for each axis in order X, Y, Z Units: 0.001 gyro sensor unit
GYRO_ZERO_HEADING_C ORR	2s			Zero offset for global Z axis to correct a heading only. This correction is distributed to all axes automatically. Units: 0.001 gyro sensor unit

CMD_DATA_STREAM_INTERVAL – register or update *data stream* – a commands sent by the controller with the fixed rate without request (*frw. ver. 2.60+*) or based on events (2.65+)

For each serial interface, only one unique combination of CMD_ID + CONFIG bytes may be registered. If the data stream is already registered, it will be updated. To unregister it, specify INTERVAL_MS=0. The total number of data streams over all serial interfaces is limited to 10.

Take care of the serial bandwidth: if data flow exceeds bandwidth, particular samples may be skipped. The same is true when the TX buffer is full when sending long commands in parallel, like CMD_READ_PARAMS_3.

The interval is maintained with the +-1ms tolerance for the individual sample, but the averaged sample rate exactly matches to specified.

Name	Туре	Min	Max	Possible values, remarks
CMD_ID	1u			Command ID to be sent by this data stream. All supported commands are listed for the "CONFIG" parameter below.
INTERVAL_MS	2u			Interval between messages, in milliseconds. Value 1 means each cycle (0.8ms) Send value 0 to unregister data stream.
CONFIG	8b			Configuration specific to each command:
				CMD_REALTIME_DATA_3

		CMD_REALTIME_DATA_4 no parameters
		 CMD_REALTIME_DATA_CUSTOM flags – 4u, see command specification.
		CMD_AHRS_HELPER • imu_type – 1u (0 – main IMU, 1 – frame IMU).
		CMD_EVENT (ver. 2.65b7+) • event_id – 1u - One of the EVENT ID xx, see the
		CMD_EVENT command specification event_type – 1u - a bitwise combination of the EVENT_TYPE_xx flags, see the CMD_EVENT command specification
RESERVED	10b	

If the data stream is successfully registered or updated, the CMD_CONFIRM is sent in answer.

For the command **CMD_EVENT**, the behavior is different. This message is sent only once when the event is triggered, so the parameter INTERVAL_MS does not matter and should be set to any non-zero value. But it is still used for the "continuous" events like EVENT_TYPE_HOLD. The "event_type" parameter can be used to select which events to report.

Examples:

CMD REALTIME DATA CUSTOM – request configurable realtime data (frw. ver. 2.60+)

Name	Туре	Min	Max	Possible values, remarks
FLAGS	4u			Each bit specify which data to include in response bit0: IMU_ANGLES[3] bit1: TARGET_ANGLES[3] bit2: TARGET_SPEED[3] bit3: STATOR_ROTOR_ANGLE[3] bit4: GYRO_DATA[3] bit5: RC_DATA[6] bit6: Z_VECTOR[3], H_VECTOR[3] bit7: RC_CHANNELS[18] bit8: ACC_DATA[3] bit9: MOTOR4_CONTROL_data structure bit10: AHRS_DEBUG_INFO_data structure bit11: ENCODER_RAW24[3] bit12: IMU_ANGLES_RAD[3] A detailed description of the data structure is provided in the CMD_REALTIME_DATA_CUSTOM response specification
RESERVED	6b			

CMD_BEEP_SOUND - play melody by motors or emit standard beep sound

Name	Туре	Min	Max	Possible values, remarks				
MODE	2u			Pre-defined melodies: BEEPER_MODE_CALIBRATE = (1<<0) BEEPER_MODE_CONFIRM = (1<<1) BEEPER_MODE_ERROR = (1<<2) BEEPER_MODE_CLICK = (1<<4) BEEPER_MODE_COMPLETE = (1<<5) BEEPER_MODE_INTRO = (1<<6) Custom melody: BEEPER_MODE_CUSTOM_MELODY = (1<<15)				
NOTE_LENGTH	1u	1	255	The duration of each note in custom melody mode. Units: 8ms samples				
DECAY_FACTOR	1u	0	15	Set the envelope "attack-decay" after each pause, that makes sound more natural. The bigger value, the longer decay. 0 - no decay. *Note: envelope takes effect only in the encoder-enabled firmware or when motors are OFF. The same is true for the 'volume' parameter in the GUI.				
RESERVED	8b							
NOTE_FREQ_HZ[N]	2u*N	554	21000	Array of 2u elements, size N = 050, - melody to play if mode=BEEPER_MODE_CUSTOM_MELODY. Special value 21000 used to restart the envelope. Value > 21000 restarts envelope and makes a pause with the duration (val – 21000) 8ms-samples. Units: Hz				

Example 1: simple melody with short B5, D6, G6 notes and envelope:

00 80 05 03 00 00 00 00 00 00 00 DB 03 DB 03 08 52 DB 03 DB 03 08 52 96 04 96 04 08 52 1F 06 1F 06 1F 06 1F 06

Example2: standard "calibration" sound: 01 00 00 03 00 00 00 00 00 00 00 00 00

Example3: single beep 1 second at 3kHz:

00 80 7D 00 00 00 00 00 00 00 00 00 B8 0B

CMD_ENCODERS_CALIB_OFFSET_4 - calibrate offset of encoders

No parameters.

(frw. ver. 2.68b7+) optional parameter FOR_MOTOR (1u): value 0..2 to calibrate offset only for the given motor ROLL, PITCH or YAW. Value 255 – for all motors.

CMD_ENCODERS_CALIB_FLD_OFFSET_4 - start field offset calibration of encoders

Simple format: no parameters

Extended format (frw. ver. 2.62b6+):

Name	Туре	Min	Max	Possible values, remarks
CALIB_ANGLE[3]	2s*3	-16384	16384	Angle range to move during calibration. Default is 40°. Units: 0,02197265625 degree.

CMD_ADJ_VARS_STATE – request the state of adjustable variable in the given trigger and analog slots.

Firmware ver. prior to 2.62b5:

Name	Туре	Min	Max	Possible values, remarks				
TRIGGER_SLOT	1u	0	9					
ANALOG_SLOT	1u	0	14					

Firmware ver. 2.62b5+:

Name	Туре	Min	Max	Possible values, remarks					
TRIGGER_SLOT	1u	0	9	"Trigger" slot number to show its state					
ANALOG_SRC_ID	2u			Signal source to show its value					
ANALOG_VAR_ID	1u			Variable ID to show its value					
LUT_SRC_ID	2u			Signal source to show its value					
LUT_VAR_ID	1u			Variable ID to show its value					

CMD_CALIB_ORIENT_CORR – start the calibration of sensor misalignment correction (frw. ver. 2.61+)

Name	Туре	Min	Max	Possible values, remarks
RESERVED	16b			

Confirmation is sent immediately. After calibration is finished, CMD_READ_PARAMS_EXT2 is sent with new values in the IMU_ORIENTATION_CORR[3].

CMD_CALIB_ACC_EXT_REF - refine the accelerometer calibration of the main IMU sensor (frw. ver. 2.62b7+, encoders)

Use this command to refine the ACC calibration in the main IMU sensor by providing the reference ACC vector from the external well-calibrated IMU in the frame's coordinates. By using three encoders, gimbal controller is able to convert it to the main IMU's local coordinates, compare to measured ACC vector and use it to refine existing calibration: zero offset for two horizontal axes and scale factor for the vertical axis.

Name	Туре	Min	Max	Possible values, remarks
ACC_REF[3]	2s*3			Reference ACC vector [X,Y,Z] in gimbal frame's coordinates (X-axis points right, Y-axis points forward, Z-axis points down relative to frame). Units: $1g/512 \approx 0.019160156 \text{ m/s}^2$
RESERVED	14b			

Conditions:

- One of the sensor's axis should be aligned to a gravity vector with the 20-degree tolerance
- Existing ACC calibration should be good enough

Possible usage scenario:

- 1. Rotate gimbal to a leveled position by the CMD_CONTROL and run this command X,Y-axis offset will be refined
- 2. Tilt gimbal 90-degree down and run it again Z-axis offset and Y-axis scale will be refined.
- 3. Return gimbal back to leveled position and run it again Z-axis scale will be refined. This is enough to have correct ACC readings inside the working range ROLL=0, PITCH = [0..90].

Calibration takes about 0.5 seconds (controller averages multiple data samples to reduce noise). Confirmation is sent only if all conditions are satisfied.

CMD_PROFILE_SET – manage profile sets (frw. ver. 2.65+)

Name	Туре	Min	Max	Possible values, remarks				
SLOT	1u	1	6	Slot to operate. 15: regular slots, 6 – backup slot				
ACTION	1u			PROFILE_SET_ACTION_SAVE = 1 save current configuration (including all profiles and simple calibrations) to the given slot PROFILE_SET_ACTION_CLEAR = 2 cleat the selected slot PROFILE_SET_ACTION_LOAD = 3 load configuration from the given slot				
RESERVED	8b							

Confirmation is sent on success.

CMD_SIGN_MESSAGE - sign message by secret keys

Name	Туре	Min	Max	Possible values, remarks			
SIGN_TYPE	1u			Defines a set of keys to be used			
MESSAGE	32b			Message to be siged			

Signed message is sent in response in the command CMD_SIGN_MESSAGE

CMD_EXT_IMU_CMD – forward message from the controller to the connected external IMU sensor

Basecam GPS_IMU

Name	Туре	Min	Max	Possible values, remarks				
CMD_ID	1u			Command ID (see GPS_IMU API specification for available commands)				
DATA				Payload				

The response from the external IMU will be sent back in the CMD EXT IMU CMD incoming command.

Appendix A: Examples and libraries

Examples can be downloaded from the link: https://github.com/alexmos/sbgc-api-examples

See README for details.

Currently, examples are written in C++ for Arduino platform only.

Libraries

C++ library included as a part of examples folder. Note that it contains definitions only for basic commands and does not cover all Serial API protocol. You can use it as an example/template for writing your own application.

CRC16 reference implementation in C

```
void crc16_update(uint16_t length, uint8_t *data, uint8_t crc[2]) {
    uint16_t counter;
    uint16_t polynom = 0x8005;
    uint16_t crc_register = (uint16_t)crc[0] | ((uint16_t)crc[1] << 8);</pre>
    uint8_t shift_register;
    uint8_t data_bit, crc_bit;
    for (counter = 0; counter < length; counter++) {</pre>
         for (shift_register = 0x01; shift_register > 0x00; shift_register <<= 1) {</pre>
            data_bit = (data[counter] & shift_register) ? 1 : 0;
            crc_bit = crc_register >> 15;
            crc_register <<= 1;</pre>
            if (data_bit != crc_bit) crc_register ^= polynom;
        }
    }
    crc[0] = crc register;
    crc[1] = (crc_register >> 8);
}
void crc16_calculate(uint16_t length, uint8_t *data, uint8_t crc[2]) {
    crc[0] = 0; crc[1] = 0;
    crc16_update(length, data, crc);
}
```

Appendix B: Definition of dynamically configurable parameters

NAME	Frw. ver.	ID	TYPE	MIN	MAX	REMARK
P_ROLL P_PITCH P_YAW		0 1 2	1u	0	255	
I_ROLL I_PITCH I_YAW		3 4 5	1u	0	255	
D_ROLL D_PITCH D_YAW		6 7 8	1u	0	255	
POWER_ROLL POWER_PITCH POWER_YAW		9 10 11	1u	0	255	
ACC_LIMITER		12	2s	0	1275	Units: degrees/sec ²
FOLLOW_SPEED_ROLL FOLLOW_SPEED_PITCH FOLLOW_SPEED_YAW		13 14 15	1u	0	255	
FOLLOW_LPF_ROLL FOLLOW_LPF_PITCH FOLLOW_LPF_YAW		16 17 18	1u	0	15	
RC_SPEED_ROLL RC_SPEED_PITCH RC_SPEED_YAW		19 20 21	1u	0	255	
RC_LPF_ROLL RC_LPF_PITCH RC_LPF_YAW		22 23 24	1u	0	15	
RC_TRIM_ROLL RC_TRIM_PITCH RC_TRIM_YAW		25 26 27	1s	-127	127	
RC_DEADBAND		28	1u	0	255	
RC_EXPO_RATE		29	1u	0	100	
FOLLOW_PITCH		30	1u	0	1	0 – disabled 1* – Follow PITCH [optionally ROLL] *frw. ver. 2.65b3
FOLLOW_YAW_PITCH		31	1u	0	2	0 – disabled 1 - Follow YAW 2* – Follow YAW, PITCH [ROLL] *frw. ver. 2.65b3
FOLLOW_DEADBAND		32	1u	0	255	
FOLLOW_EXPO_RATE		33	1u	0	100	
FOLLOW_ROLL_MIX_START		34	1u	0	90	
FOLLOW_ROLL_MIX_RANGE		35	1u	0	90	
GYRO_TRUST		36	1u	0	255	
FRAME_HEADING_ANGLE		37	2s	-1800	1800	Units: 0.1 degrees

						Special value 0x7FFF to disable correction
GYRO_HEADING_CORRECTION		38	2s	-20000	20000	Units: 0.001 of gyro sensor units
ACC_LIMITER_ROLL ACC_LIMITER_PITCH ACC_LIMITER_YAW		39 40 41	2s	0	1275	Units: degrees/sec ²
PID_GAIN_ROLL PID_GAIN_PITCH PID_GAIN_YAW		42 43 44	1u	0	255	Gain is calculated as 0.1 + PID_GAIN[axis]*0.02
LPF_FREQ_ROLL LPF_FREQ_PITCH LPF_FREQ_YAW		45 46 47	2u	10	400	Units: Hz
TIMELAPSE_TIME		48	2u	1	3600	Units: sec
MAV_CTRL_MODE		49	1u	0	2	0 – disabled 1 – ROLL and PITCH only 2 – enabled for all axes
H_CORR_FACTOR	2.68b7	50	1u	0	255	Heading correction factor from external reference
SW_LIM_MIN.ROLL SW_LIM_MAX.ROLL SW_LIM_MIN.PITCH SW_LIM_MAX.PITCH SW_LIM_MIN.YAW SW_LIM_MAX.YAW	2.68b8	51 52 53 54 55 56	2s	-3600	3600	Software limits for each motor, degrees (encoder firmware only)
FOLLOW_RANGE.ROLL FOLLOW_RANGE.PITCH FOLLOW_RANGE.YAW	2.68b9	57 58 59	1u	0	255	Units: degrees
AUTO_PID_TARGET	2.68b9	60	1u	0	255	Stability-precision slider for automatic PID tuing algorithm
RC_MODE.ROLL RC_MODE.PITCH RC_MODE.YAW	2.69b3	61 62 63	1u			0 – ANGLE 1 – SPEED 2 – TRACKING
EULER_ORDER	2.69b3	64	1u			0 – PITCH-ROLL-YAW 1 – ROLL-PITCH-YAW 2 – PITCH(M)-ROLL-YAW(M) 3 – ROLL-PITCH(M)-YAW(M) 4 – YAW-ROLL-PITCH

Appendix C: Providing external reference attitude/heading information from UAV

Serial API allows for flight controllers of UAVs to send attitude and heading information that can be used as a reference to correct attitude and heading of internal IMU, improving its precision. As a rule, flight controllers have more sensors on-board and can do better attitude/heading angles estimation than the IMU sensor used in the SBGC32 controller.

This kind of correction is described in details in section 18 of the "SimpleBGC32 User Manual". Our controller supports direct connection only for several models of AHRS/IMU devices. For others, Serial API can be used.

In few words, there are two options to apply correction:

- 1. provide attitude and/or heading of the frame via command CMD_AHRS_HELPER
- 2. compensate for linear accelerations via command CMD_HELPER_DATA

Option 1) is better, because attitude/heading information is used directly, allowing to disable internal accelerometer and keep using internal gyroscope only. However, it requires knowing an exact attitude of the gimbal's frame. But a common case when gimbal mounted on the UAV has anti-vibration dampers, which adds some degree of freedom. It makes option 1) not applicable for precise attitude correction.

Option 2) is more tolerant in this case. You can use it to compensate attitude drift caused by the accelerated motion. Attitude is still computed inside gimbal's controller, using internal accelerometer and gyroscope. You need to pass linear accelerations (with the gravity subtracted) in the command CMD_HELPER_DATA. Also, you can provide heading information to synchronize heading angle of the camera with the heading of UAV.

Option 2) does not help to compensate for a drift caused by the thermal instability of gyroscope and accelerometer.